Approximation schemes for stochastic differential equations in Hilbert space

被引:3
作者
Mishura, Yu. S. [1 ]
Shevchenko, G. M. [1 ]
机构
[1] Kyi Taras Shevchenko Natl Univ, Dept Mech & Math, UA-01033 Kiev, Ukraine
关键词
stochastic differential equations in Hilbert space; discrete-time approximations; Milstein scheme; Ito-Volterra type equation; EVOLUTION EQUATIONS; NUMERICAL APPROXIMATION; DRIVEN;
D O I
10.1137/S0040585X97982487
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For solutions of Ito - Volterra equations and semilinear evolution- type equations we consider approximations via the Milstein scheme, approximations by finite- dimensional processes, and approximations by solutions of stochastic differential equations ( SDEs) with bounded coefficients. We prove mean- square convergence for finite- dimensional approximations and establish results on the rate of mean- square convergence for two remaining types of approximation.
引用
收藏
页码:442 / 458
页数:17
相关论文
共 25 条
[1]  
[Anonymous], SEMI GROUPS OPERATOR
[2]  
[Anonymous], THEORY PROBAB MATH S
[3]  
BOUKFAOUI YE, 2002, STOCH ANAL APPL, V20, P495
[4]  
CLARK J. M. C., 1980, Lecture Notes in Control and Information Sciences, P162
[5]  
Daletskii Yu. L., 1991, Measures and Differential Equations in Infinite-Dimensional Spaces
[6]   Numerical approximation of some linear stochastic partial differential equations driven by special additive noises [J].
Du, Q ;
Zhang, TY .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (04) :1421-1445
[7]  
GRECSCH W, 1995, STOCHASTIC EVOLUTION
[8]   On discretization schemes for stochastic evolution equations [J].
Gyöngy, I ;
Millet, A .
POTENTIAL ANALYSIS, 2005, 23 (02) :99-134
[9]  
Gyöngy I, 2003, ANN PROBAB, V31, P564
[10]  
GYONGY I, 2003, RATE CONVERGENCE SPL, P301