Chain complexes of symmetric categorical groups

被引:10
作者
del Río, A
Martínez-Moreno, J
Vitale, EM
机构
[1] Catholic Univ Louvain, Dept Math, B-1348 Louvain, Belgium
[2] Univ Granada, Fac Ciencias, Dept Algebra, E-18071 Granada, Spain
[3] Univ Jaen, Dept Matemat, Jaen 23071, Spain
关键词
D O I
10.1016/j.jpaa.2004.08.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define the cohomology categorical groups of a complex of symmetric categorical groups, and we construct a long 2-exact sequence from an extension of complexes. As special cases, we obtain Ulbrich cohomology of Picard categories and the Hattori-Villamayor-Zelinsky sequences associated with a ring homomorphism. Applications to simplicial cohomology with coefficients in a symmetric categorical group, and to derivations of categorical groups are also discussed. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:279 / 312
页数:34
相关论文
共 19 条
[1]  
Bourn D, 2002, HOMOL HOMOTOPY APPL, V4, P103
[2]   (Braided) tensor structures on homotopy groupoids and nerves of (braided) categorical groups [J].
Carrasco, P ;
Cegarra, AM .
COMMUNICATIONS IN ALGEBRA, 1996, 24 (13) :3995-4058
[3]   Simplicial cohomology with coefficients in symmetric categorical groups [J].
Carrasco, P ;
Martínez-Moreno, J .
APPLIED CATEGORICAL STRUCTURES, 2004, 12 (03) :257-285
[4]   Homotopy classification of categorical torsors [J].
Cegarra, AM ;
Garzón, AR .
APPLIED CATEGORICAL STRUCTURES, 2001, 9 (05) :465-496
[5]  
DUSKIN JW, 2004, FIELDS I COMM, V43
[6]  
GARZON AR, 2002, CAHIERS TOPOLOGIE GE, V44, P247
[7]  
GARZON AR, IN PRESS THEORY APPL
[8]  
Kasangian S., 2000, THEORY APPL CATEGORI, V7, P47
[9]  
MARTINEZMORENO J, 2001, THESIS GRANADA
[10]  
Rousseau A., 2003, Homology Homotopy Appl., V5, P437