MODULES SATISFYING THE S-NOETHERIAN PROPERTY AND S-ACCR

被引:36
作者
Ahmed, Hamed [1 ]
Sana, Hizem [1 ]
机构
[1] Fac Sci, Dept Math, Monastir, Tunisia
关键词
S-Noetherian; S-ACCR;
D O I
10.1080/00927872.2015.1027377
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative ring with unity, S a multiplicative subset of R, and M an R-module. In this article, we investigate S-Noetherian modules. We give an S-version of Eakin-Nagata-Formanek Theroem [7], in the case where S is finite. We prove that if M is an S-finite R-module and any increasing chain of extended submodules of M is S-stationary then M is S-Noetherian. In the second part of this article, we define S-accr modules. An R-module M is said to satisfy S-accr if any ascending chain of residuals of the form (N : B) subset of (N : B-2) subset of (N : B-3) subset of ... is S-stationary where N is a submodule of M and B is a finitely generated ideal of R. We investigate the class of such modules M, and we generalize some known results of P. C. Lu ([5], [6]).
引用
收藏
页码:1941 / 1951
页数:11
相关论文
共 8 条
[1]   S-Noetherian Rings of the Forms A[X] and A[[X]] [J].
Ahmed, Hamed ;
Sana, Hizem .
COMMUNICATIONS IN ALGEBRA, 2015, 43 (09) :3848-3856
[2]   S-Noetherian rings [J].
Anderson, DD ;
Dumitrescu, T .
COMMUNICATIONS IN ALGEBRA, 2002, 30 (09) :4407-4416
[3]   IDEAL DECOMPOSITIONS IN NOETHERIAN RINGS [J].
BARNES, WE ;
CUNNEA, WM .
CANADIAN JOURNAL OF MATHEMATICS, 1965, 17 (01) :178-&
[4]   FAITHFUL NOETHERIAN MODULES [J].
FORMANEK, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 41 (02) :381-383
[5]  
Lee SC, 2005, J KOREAN MATH SOC, V42, P933
[6]   MODULES SATISFYING ACC ON A CERTAIN TYPE OF COLONS [J].
LU, CP .
PACIFIC JOURNAL OF MATHEMATICS, 1988, 131 (02) :303-318
[7]   MODULES AND RINGS SATISFYING (ACCR) [J].
LU, CP .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 117 (01) :5-10
[8]  
NAGATA M, 1993, J MATH KYOTO U, V33, P825