Investigation of the acoustic emission characteristics during deformation and failure of gas-bearing coal-rock combined bodies

被引:79
作者
Du, Feng [1 ,2 ]
Wang, Kai [1 ,2 ,3 ]
Wang, Gongda [4 ]
Jiang, Yifeng [5 ]
Xin, Chengpeng [2 ,6 ]
Zhang, Xiang [1 ,2 ]
机构
[1] China Univ Min & Technol Beijing, Beijing Key Lab Precise Min Intergrown Energy & R, Beijing 100083, Peoples R China
[2] China Univ Min & Technol Beijing, Fac Resources & Safety Engn, Beijing 100083, Peoples R China
[3] North China Inst Sci & Technol, Hebei State Key Lab Mine Disaster Prevent, Beijing 101601, Peoples R China
[4] China Coal Res Inst, Mine Safety Technol Branch, Beijing 100013, Peoples R China
[5] China Elect Power Res Inst, Beijing 100192, Peoples R China
[6] Guizhou Univ Engn Sci, Sch Min Engn, Bijie 551700, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Coal-gas compound dynamic disasters; Coal-rock combination body; Triaxial compression; Unloading confining; Mechanical behavior; Acoustic emission; UNIAXIAL COMPRESSION; MECHANICAL-BEHAVIOR; CONFINING PRESSURE; FRACTAL CHARACTERISTICS; INDUCED SEISMICITY; MINING ACCIDENTS; CRACKLING NOISE; SANDSTONE; SAMPLES; PARAMETERS;
D O I
10.1016/j.jlp.2018.06.013
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
With increasing mining depth, coal-gas compound dynamic disasters have become an important factor restricting mining safety. In the present study, conventional triaxial compression (CTC) tests were conducted on the gas-bearing coal, gas bearing coal-mudstone combination and gas bearing coal-sandstone combination using the RLW-500G triaxial experimental system. The gas bearing coal-sandstone combined samples were subjected to unloading tests, including unloading confining pressure (UCP) under constant axial tests and UCP-reloading axial stress (UCP-RAS) tests. In addition, the acoustic emission (AE) signals and permeabilities were measured simultaneously during the mechanical process. The experimental results indicate that the deformation of the coal-rock body is stronger under unloading conditions than in the CTC tests. Moreover, the damage of the coal rock combination body is more severe in the UCP-RAS tests than in the UCP tests. Under lower confining pressure, the AE cumulative counts and the energy are higher for the gas-bearing coal-rock body than the gas bearing coal body. As the confining pressure increases, the AE cumulative counts and the energy are lower for the gas-bearing coal-rock body than for the gas bearing coal body. The AE cumulative counts and the energy of the three specimens under different stress paths decrease with the increase in the confining pressure or with the decrease in the gas pressure. The AE cumulative counts and energy of the gas-bearing coal-rock body are highest for the UCP-RAS test, followed by the UCP test and the CTC test. This study provides some references for understanding the mechanisms of coal-gas compound dynamic disasters and the basis for an early warning system.
引用
收藏
页码:253 / 266
页数:14
相关论文
共 50 条
  • [21] Failure Mechanism and Acoustic Emission Characteristics of Coal–Rock Samples
    Dongming Guo
    Wei Zhang
    Qiyu Chen
    Zhili Wang
    Journal of Mining Science, 2022, 58 : 390 - 397
  • [22] NONLINEAR CHARACTERISTICS OF ACOUSTIC EMISSION DURING THE HEATING PROCESS OF COAL AND ROCK
    Zhang, Zhibo
    Wang, Enyuan
    Zhao, Enlai
    Yang, Shuai
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (04)
  • [23] Dynamic multifractal characteristics of acoustic emission about composite coal-rock samples with different strength rock
    Liu, Jie
    Li, Qiuping
    Wang, Xiaoran
    Wang, Zaiquan
    Lu, Shouqing
    Sa, Zhanyou
    Wang, Hao
    CHAOS SOLITONS & FRACTALS, 2022, 164
  • [24] Analysis of Acoustic Emission Characteristics and Damage Constitutive Model of Coal-Rock Combined Body Based on Particle Flow Code
    Liu, Wanrong
    Yuan, Wei
    Yan, Yatao
    Wang, Xiao
    SYMMETRY-BASEL, 2019, 11 (08):
  • [25] Numerical Simulation Study on Mechanical and Acoustic Emission Characteristics of Coal-Rock Combined Body Subjected to Cyclic Disturbing Loading
    Duan, Huiqiang
    Xiong, Si
    Yu, Weibo
    GEOTECHNICAL AND GEOLOGICAL ENGINEERING, 2023, 41 (02) : 783 - 802
  • [26] Experimental investigation on the mechanical characteristics of gas-bearing coal considering the impact of moisture
    Ming-yi Chen
    Yuan-ping Cheng
    Jing-chun Wang
    Hao-ran Li
    Ning Wang
    Arabian Journal of Geosciences, 2019, 12
  • [27] Experimental investigation on the mechanical characteristics of gas-bearing coal considering the impact of moisture
    Chen, Ming-yi
    Cheng, Yuan-ping
    Wang, Jing-chun
    Li, Hao-ran
    Wang, Ning
    ARABIAN JOURNAL OF GEOSCIENCES, 2019, 12 (18)
  • [28] Experimental investigation on the characteristics of transient electromagnetic radiation during the dynamic fracturing progress of gas-bearing coal
    Xu, Xiaomeng
    Wang, Qiang
    Liu, Hui
    Zhao, Wenwen
    Zhang, Yihuai
    Wang, Chen
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2020, 17 (05) : 799 - 812
  • [29] Effect of interfacial angle on the mechanical behaviour and acoustic emission characteristics of coal-rock composite specimens
    Gu, Xuebin
    Guo, Weiyao
    Zhang, Chengguo
    Zhang, Xiufeng
    Guo, Chuanqing
    Wang, Chao
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 21 : 1933 - 1943
  • [30] Experimental study on the infrared precursor characteristics of gas-bearing coal failure under loading
    Yin, Shan
    Li, Zhonghui
    Song, Dazhao
    He, Xueqiu
    Qiu, Liming
    Lou, Quan
    Tian, He
    INTERNATIONAL JOURNAL OF MINING SCIENCE AND TECHNOLOGY, 2021, 31 (05) : 901 - 912