ON THE SPACE OF ORIENTED GEODESICS OF HYPERBOLIC 3-SPACE

被引:20
作者
Georgiou, Nikos [1 ]
Guilfoyle, Brendan [1 ]
机构
[1] Inst Technol, Dept Math, Tralee, Co Kerry, Ireland
关键词
Kaehler structure; hyperbolic; 3-space; isometry group; GEOMETRY; SURFACES; LINES;
D O I
10.1216/RMJ-2010-40-4-1183
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a kahler structure (J, Omega, G) on the space L (H-3) of oriented geodesics of hyperbolic 3-space H-3 and investigate its properties. We prove that (L(H-3), J) is biholomorphic to P-1 x P-1 - (Delta) over bar, where (Delta) over bar is the reflected diagonal, and that the Kahler metric G is of neutral signature, conformally flat and scalar flat. We establish that the identity component of the isometry group of the metric G on L (H-3) is isomorphic to the identity component of the hyperbolic isometry group. Finally, we show that the geodesics of G correspond to ruled minimal surfaces in H-3, which are totally geodesic if and only if the geodesics are null.
引用
收藏
页码:1183 / 1219
页数:37
相关论文
共 50 条
[31]   Space curves of constant breadth in Minkowski 3-space [J].
Kocayigit, Huseyin ;
Onder, Mehmet .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2013, 192 (05) :805-814
[32]   The canonical contact structure on the space of oriented null geodesics of pseudospheres and products [J].
Godoy, Yamile ;
Salvai, Marcos .
ADVANCES IN GEOMETRY, 2013, 13 (04) :713-722
[33]   Infinitesimally Helicoidal Motions with Fixed Pitch of Oriented Geodesics of a Space Form [J].
Anarella, Mateo ;
Salvai, Marcos .
ACTA APPLICANDAE MATHEMATICAE, 2022, 179 (01)
[34]   THE MAGNETIC FLOW ON THE MANIFOLD OF ORIENTED GEODESICS OF A THREE DIMENSIONAL SPACE FORM [J].
Godoy, Yamile ;
Salvai, Marcos .
OSAKA JOURNAL OF MATHEMATICS, 2013, 50 (03) :749-763
[35]   Minimal n-noids in hyperbolic and anti-de Sitter 3-space [J].
Bobenko, Alexander I. ;
Heller, Sebastian ;
Schmitt, Nicholas .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 475 (2227)
[36]   On the 3-Parameter Spatial Motions in Lorentzian 3-Space [J].
Yildirim, Handan ;
Kuruoglu, Nuri .
FILOMAT, 2018, 32 (04) :1183-1192
[37]   Outer billiards in the spaces of oriented geodesics of the three-dimensional space forms [J].
Godoy, Yamile ;
Harrison, Michael ;
Salvai, Marcos .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 109 (06)
[38]   Geometric 3-space and multiplicative quaternions [J].
Aslan, Selahattin ;
Bekar, Murat ;
Yayli, Yusuf .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (09)
[39]   On evolutoids and pedaloids in Minkowski 3-space [J].
Sekerci, Gulsah Aydin .
JOURNAL OF GEOMETRY AND PHYSICS, 2021, 168
[40]   Umbilics of surfaces in the Minkowski 3-space [J].
Tari, Farid .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2013, 65 (03) :723-731