Consideration of Cosegregation in the Pathogenicity Classification of Genomic Variants

被引:191
作者
Jarvik, Gail P. [1 ,2 ]
Browning, Brian L. [1 ,2 ]
机构
[1] Univ Washington, Dept Med, Div Med Genet, Seattle, WA 98195 USA
[2] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
关键词
SEQUENCE VARIANTS;
D O I
10.1016/j.ajhg.2016.04.003
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The American College of Medical Genetics and Genomics (ACMG) and Association of Molecular Pathology (AMP) recently published important new guidelines aiming to improve and standardize the pathogenicity classification of genomic variants. The Clinical Sequencing Exploratory Research (CSER) consortium evaluated the use of these guidelines across nine laboratories. One identified obstacle to consistent usage of the ACMG-AMP guidelines is the lack of a definition of cosegregation as criteria for pathogenicity classification. Cosegregation data differ from many other types of pathogenicity data in being quantitative. However, the ACMG-AMP guidelines do not define quantitative criteria for use of these data. Here, such quantitative criteria, in an easily implementable form, are proposed.
引用
收藏
页码:1077 / 1081
页数:5
相关论文
共 50 条
  • [1] Considerations in assessing germline variant pathogenicity using cosegregation analysis
    Belman, Sophie
    Parsons, Michael T.
    Spurdle, Amanda B.
    Goldgar, David E.
    Feng, Bing-Jian
    GENETICS IN MEDICINE, 2020, 22 (12) : 2052 - 2059
  • [2] Understanding variants of unknown significance and classification of genomic alterations
    Pavlick, Dean C.
    Frampton, Garrett M.
    Ross, Jeffrey R.
    ONCOLOGIST, 2024, 29 (08) : 658 - 666
  • [3] Refinement of pathogenicity classification of variants associated with familial hypercholesterolemia: Implications for clinical diagnosis
    Di Costanzo, Alessia
    Minicocci, Ilenia
    D'Erasmo, Laura
    Commodari, Daniela
    Covino, Stella
    Bini, Simone
    Ghadiri, Ameneh
    Ceci, Fabrizio
    Maranghi, Marianna
    Catapano, Alberico L.
    Gazzotti, Marta
    Casula, Manuela
    Montali, Anna
    Arca, Marcello
    JOURNAL OF CLINICAL LIPIDOLOGY, 2021, 15 (06) : 822 - 831
  • [4] Classification of 101 BRCA1 and BRCA2 variants of uncertain significance by cosegregation study: A powerful approach
    Caputo, Sandrine M.
    Golmard, Lisa
    Leone, Melanie
    Damiola, Francesca
    Guillaud-Bataille, Marine
    Revillion, Francoise
    Rouleau, Etienne
    Derive, Nicolas
    Buisson, Adrien
    Basset, Noemie
    Schwartz, Mathias
    Vilquin, Paul
    Garrec, Celine
    Privat, Maud
    Gay-Bellile, Mathilde
    Abadie, Caroline
    Abidallah, Khadija
    Airaud, Fabrice
    Allary, Anne-Sophie
    Barouk-Simonet, Emmanuelle
    Belotti, Muriel
    Benigni, Charlotte
    Benusiglio, Patrick R.
    Berthemin, Christelle
    Berthet, Pascaline
    Bertrand, Ophelie
    Bezieau, Stephane
    Bidart, Marie
    Bignon, Yves-Jean
    Birot, Anne-Marie
    Blanluet, Maud
    Bloucard, Amelie
    Bombled, Johny
    Bonadona, Valerie
    Bonnet, Francoise
    Bonnet-Dupeyron, Marie-Noelle
    Boulaire, Manon
    Boulouard, Flavie
    Bouras, Ahmed
    Bourdon, Violaine
    Brahimi, Afane
    Brayotel, Fanny
    de Paillerets, Brigitte Bressac
    Bronnec, Noemie
    Bubien, Virginie
    Buecher, Bruno
    Cabaret, Odile
    Carriere, Jennifer
    Chiesa, Jean
    Chieze-Valero, Stephanie
    AMERICAN JOURNAL OF HUMAN GENETICS, 2021, 108 (10) : 1907 - 1923
  • [5] ClinGen Pathogenicity Calculator: a configurable system for assessing pathogenicity of genetic variants
    Patel, Ronak Y.
    Shah, Neethu
    Jackson, Andrew R.
    Ghosh, Rajarshi
    Pawliczek, Piotr
    Paithankar, Sameer
    Baker, Aaron
    Riehle, Kevin
    Chen, Hailin
    Milosavljevic, Sofia
    Bizon, Chris
    Rynearson, Shawn
    Nelson, Tristan
    Jarvik, Gail P.
    Rehm, Heidi L.
    Harrison, Steven M.
    Azzariti, Danielle
    Powell, Bradford
    Babb, Larry
    Plon, Sharon E.
    Milosavljevic, Aleksandar
    GENOME MEDICINE, 2017, 9
  • [6] Characterizing the pathogenicity of genetic variants: the consequences of context
    Ciesielski, Timothy H.
    Sirugo, Giorgio
    Iyengar, Sudha K.
    Williams, Scott M.
    NPJ GENOMIC MEDICINE, 2024, 9 (01)
  • [7] Biological relevance of computationally predicted pathogenicity of noncoding variants
    Liu, Li
    Sanderford, Maxwell D.
    Patel, Ravi
    Chandrashekar, Pramod
    Gibson, Greg
    Kumar, Sudhir
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [8] How good are pathogenicity predictors in detecting benign variants?
    Niroula, Abhishek
    Vihinen, Mauno
    PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (02)
  • [9] REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants
    Ioannidis, Nilah M.
    Rothstein, Joseph H.
    Pejaver, Vikas
    Middha, Sumit
    McDonnell, Shannon K.
    Baheti, Saurabh
    Musolf, Anthony
    Li, Qing
    Holzinger, Emily
    Karyadi, Danielle
    Cannon-Albright, Lisa A.
    Teerlink, Craig C.
    Stanford, Janet L.
    Isaacs, William B.
    Xu, Jianfeng
    Cooney, Kathleen A.
    Lange, Ethan M.
    Schleutker, Johanna
    Carpten, John D.
    Powell, Isaac J.
    Cussenot, Olivier
    Cancel-Tassin, Geraldine
    Giles, Graham G.
    MacInnis, Robert J.
    Maier, Christiane
    Hsieh, Chih-Lin
    Wiklund, Fredrik
    Catalona, William J.
    Foulkes, William D.
    Mandal, Diptasri
    Eeles, Rosalind A.
    Kote-Jarai, Zsofia
    Bustamante, Carlos D.
    Schaid, Daniel J.
    Hastie, Trevor
    Ostrander, Elaine A.
    Bailey-Wilson, Joan E.
    Radivojac, Predrag
    Thibodeau, Stephen N.
    Whittemore, Alice S.
    Sieh, Weiva
    AMERICAN JOURNAL OF HUMAN GENETICS, 2016, 99 (04) : 877 - 885
  • [10] Performance evaluation of pathogenicity-computation methods for missense variants
    Li, Jinchen
    Zhao, Tingting
    Zhang, Yi
    Zhang, Kun
    Shi, Leisheng
    Chen, Yun
    Wang, Xingxing
    Sun, Zhongsheng
    NUCLEIC ACIDS RESEARCH, 2018, 46 (15) : 7793 - 7804