Minimization of gradient errors of piecewise linear interpolation on simplicial meshes

被引:15
作者
Agouzal, Abdellatif [2 ]
Vassilevski, Yuri V. [1 ]
机构
[1] Russian Acad Sci, Inst Numer Math, Moscow 119333, Russia
[2] Univ Lyon 1, UMR 5585, Lab Analyse Numer, F-69622 Villeurbanne, France
基金
俄罗斯基础研究基金会;
关键词
Optimal mesh; Gradient interpolation error; Metric based adaptation;
D O I
10.1016/j.cma.2010.03.019
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The paper is devoted to the analysis of optimal simplicial meshes which minimize the gradient error of the piecewise linear interpolation over all conformal simplicial meshes with a fixed number of cells N-T. We present theoretical results on asymptotic dependencies of L-p-norms of the gradient error on N-T for spaces of arbitrary dimension d. Our analysis is based on a geometric representation of the gradient error of linear interpolation on a simplex and a relaxed saturation assumption. We derive a metric field M-p such that a M-p-quasi-uniform mesh is quasi-optimal, for arbitrary d and p is an element of]0, +infinity]. Quasi-optimal meshes provide the same asymptotics of the L-p-norm of the gradient error as the optimal meshes. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2195 / 2203
页数:9
相关论文
共 23 条
[21]  
Vassilevski Yu., 1999, COMP MATH MATH PHYS, V39, P1532
[22]  
Vassilevski YV, 2005, DOKL MATH, V72, P879
[23]  
Verf?rth R., 1996, REV POSTERIORI ERROR