Elastic serum-albumin based hydrogels: mechanism of formation and application in cardiac tissue engineering

被引:0
作者
Amdursky, Nadav [1 ,2 ,5 ]
Mazo, Manuel M. [1 ,2 ,6 ]
Thomas, Michael R. [1 ,2 ]
Humphrey, Eleanor J. [3 ]
Puetzer, Jennifer L. [1 ,2 ]
St-Pierre, Jean-Philippe [1 ,2 ]
Skaalure, Stacey C. [1 ,2 ]
Richardson, Robert M. [4 ]
Terracciano, Cesare M. [3 ]
Stevens, Molly M. [1 ,2 ]
机构
[1] Imperial Coll Lodon, Dept Bioengn, Dept Mat, London SW7 2AZ, England
[2] Imperial Coll Lodon, Inst Biomed Engn, London SW7 2AZ, England
[3] Imperial Coll Lodon, Imperial Ctr Translat & Expt Med, Natl Heart & Lung Inst, London SW7 2AZ, England
[4] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
[5] Technion Israel Inst Technol, Schulich Fac Chem, IL-3200003 Haifa, Israel
[6] Univ Navarra, Ctr Appl Med Res, Cell Therapy Program, Pamplona 31008, Spain
基金
英国惠康基金; 英国工程与自然科学研究理事会;
关键词
HUMAN MYOCARDIUM; IN-SITU; MATURATION; MATRIX; SCATTERING; SCAFFOLDS; TENSION; SYSTEM; CUES;
D O I
10.1039/c8tb01014e
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Hydrogels are promising materials for mimicking the extra-cellular environment. Here, we present a simple methodology for the formation of a free-standing viscoelastic hydrogel from the abundant and low cost protein serum albumin. We show that the mechanical properties of the hydrogel exhibit a complicated behaviour as a function of the weight fraction of the protein component. We further use X-ray scattering to shed light on the mechanism of gelation from the formation of a fibrillary network at low weight fractions to interconnected aggregates at higher weight fractions. Given the match between our hydrogel elasticity and that of the myocardium, we investigated its potential for supporting cardiac cells in vitro. Interestingly, these hydrogels support the formation of several layers of myocytes and significantly promote the maintenance of a native-like gene expression profile compared to those cultured on glass. When confronted with a multicellular ventricular cell preparation, the hydrogels can support macroscopically contracting cardiac-like tissues with a distinct cell arrangement, and form mm-long vascular-like structures. We envisage that our simple approach for the formation of an elastic substrate from an abundant protein makes the hydrogel a compelling biomedical material candidate for a wide range of cell types.
引用
收藏
页码:5604 / 5612
页数:9
相关论文
共 44 条
[41]  
Trantidou T, 2016, TISSUE ENG PART C-ME, V22, P464, DOI [10.1089/ten.TEC.2015.0581, 10.1089/ten.tec.2015.0581]
[42]   Growth of Engineered Human Myocardium With Mechanical Loading and Vascular Coculture [J].
Tulloch, Nathaniel L. ;
Muskheli, Veronica ;
Razumova, Maria V. ;
Korte, F. Steven ;
Regnier, Michael ;
Hauch, Kip D. ;
Pabon, Lil ;
Reinecke, Hans ;
Murry, Charles E. .
CIRCULATION RESEARCH, 2011, 109 (01) :47-U195
[43]   Cross talk between cardiac myocytes and fibroblasts: from multiscale investigative approaches to mechanisms and functional consequences [J].
Zhang, P. ;
Su, J. ;
Mende, U. .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2012, 303 (12) :H1385-H1396
[44]   Shear Stress-Initiated Signaling and Its Regulation of Endothelial Function [J].
Zhou, Jing ;
Li, Yi-Shuan ;
Chien, Shu .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2014, 34 (10) :2191-2198