Mechanically tunable terahertz graphene plasmonics using soft metasurface

被引:8
作者
Wang, Li [1 ]
Liu, Xin [1 ,2 ]
Zang, Jianfeng [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Innovat Inst, Wuhan 430074, Peoples R China
来源
2D MATERIALS | 2016年 / 3卷 / 04期
基金
中国国家自然科学基金;
关键词
graphene; plasmons; terahertz; metasurface; soft substrate; large deformation; decoupling; METAMATERIALS; MATTER; ARRAYS;
D O I
10.1088/2053-1583/3/4/041007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This letter presents a new approach to continuously tune the resonances of graphene plasmons in terahertz soft metasurface. The continuous tunability of plasmon resonance is either unachievable in conventional plasmonic materials like noble metals or requires gate voltage regulation in graphene. Here we investigate a simplest form of terahertz metasurface, graphene nanoribbon arrays (GNRAs), and demonstrate the graphene plasmon resonance modes can be tailored by mechanical deformation of the elastomeric substrate using finite element method (FEM). By integrating the electric doping with substrate deformation, we have managed to tune the resonance wavelength from 13.7 to 50.6 mu m. The 36.9 mu m tuning range is nearly doubled compared with that by electric doping regulation only. Moreover, we observe the plasmon coupling effect in GNRAs on waved substrate and its evolution with substrate curvature. Anew decoupling mechanism enabled by the out-of-plane separation of the adjacent ribbons is revealed. The out-of-plane setup of plasmonic components extends the fabrication of plasmonic devices into three-dimensional space, which simultaneously increases the nanoribbon density and decreases the coupling strength. Our findings provide an additional degree of freedom to design reconfigurable metasurfaces and metadevices.
引用
收藏
页数:8
相关论文
共 29 条
  • [1] Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays
    Adato, Ronen
    Yanik, Ahmet A.
    Amsden, Jason J.
    Kaplan, David L.
    Omenetto, Fiorenzo G.
    Hong, Mi K.
    Erramilli, Shyamsunder
    Altug, Hatice
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (46) : 19227 - 19232
  • [2] Bozhevolnyi S. I., 2008, FRONTIERS OPTICS 200
  • [3] Branched Silver Nanowires as Controllable Plasmon Routers
    Fang, Yurui
    Li, Zhipeng
    Huang, Yingzhou
    Zhang, Shunping
    Nordlander, Peter
    Halas, Naomi J.
    Xu, Hongxing
    [J]. NANO LETTERS, 2010, 10 (05) : 1950 - 1954
  • [4] All-Optical Logic Gates Based on Nanoscale Plasmonic Slot Waveguides
    Fu, Yulan
    Hu, Xiaoyong
    Lu, Cuicui
    Yue, Song
    Yang, Hong
    Gong, Qihuang
    [J]. NANO LETTERS, 2012, 12 (11) : 5784 - 5790
  • [5] Soft matter with hard skin: From skin wrinkles to templating and material characterization
    Genzer, J
    Groenewold, J
    [J]. SOFT MATTER, 2006, 2 (04) : 310 - 323
  • [6] Mechanically Tunable Dielectric Resonator Metasurfaces at Visible Frequencies
    Gutruf, Philipp
    Zou, Chengjun
    Withayachumnankul, Withawat
    Bhaskaran, Madhu
    Sriram, Sharath
    Fumeaux, Christophe
    [J]. ACS NANO, 2016, 10 (01) : 133 - 141
  • [7] Ultra-compact optical modulator by graphene induced electro-refraction effect
    Hao, Ran
    Du, Wei
    Chen, Hongsheng
    Jin, Xiaofeng
    Yang, Longzhi
    Li, Erping
    [J]. APPLIED PHYSICS LETTERS, 2013, 103 (06)
  • [8] Plasmonics in graphene at infrared frequencies
    Jablan, Marinko
    Buljan, Hrvoje
    Soljacic, Marin
    [J]. PHYSICAL REVIEW B, 2009, 80 (24):
  • [9] Highly Sensitive Plasmonic Silver Nanorods
    Jakab, Arpad
    Rosman, Christina
    Khalavka, Yuriy
    Becker, Jan
    Truegler, Andreas
    Hohenester, Ulrich
    Soennichsen, Carsten
    [J]. ACS NANO, 2011, 5 (09) : 6880 - 6885
  • [10] Ju L, 2011, NAT NANOTECHNOL, V6, P630, DOI [10.1038/nnano.2011.146, 10.1038/NNANO.2011.146]