On the Active Vibration Control of Nonlinear Uncertain Structures

被引:7
作者
Dertimanis, Vasilis K. [1 ]
Chatzi, Eleni N. [1 ]
Masri, Sami F. [2 ]
机构
[1] Swiss Fed Inst Technol, Inst Struct Engn, Dept Civil Environm & Geomat Engn, Stefano Franscini Pl 5, CH-8093 Zurich, Switzerland
[2] Univ Southern Calif, Viterbi Sch Engn, 3620 South Vermont Ave, Los Angeles, CA 90089 USA
关键词
Vibration Mitigation; Nonlinear Adaptive Control; Unscented Kalman Filter; Linear-Quadratic Regulator; Joint State and Parameter Identification; State-feedback Linearization; UNSCENTED KALMAN FILTER; ADAPTIVE-CONTROL; PARAMETRIC IDENTIFICATION; PARTICLE; SYSTEMS; STATE; TIME; JOINT;
D O I
10.22055/JACM.2020.34007.2322
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This study proposes an active nonlinear control strategy for effective vibration mitigation in nonlinear dynamical systems characterized by uncertainty. The proposed scheme relies on the coupling of a Bayesian nonlinear observer, namely the Unscented Kalman Filter (UKF) with a two-stage control process. The UKF is implemented for adaptive joint state and parameter estimation, with the estimated states and parameters passed onto the controller. The controller comprises a first task of feedback linearization, allowing for subsequent integration of any linear control strategy, such as addition of damping, LQR control, or other, which then operates on the linearized state equations. The proposed framework is validated on a Duffing oscillator characterized by light damping and an uncertain nonlinear parameter under harmonic and stochastic disturbance. The demonstrated performance suggests that the proposed Bayesian approach offers a competitive approach for active vibration suppression in nonlinear uncertain systems.
引用
收藏
页码:1183 / 1197
页数:15
相关论文
共 61 条
[1]  
Anderson B. D., 1989, Optimal Control-Linear Quadratic Methods
[2]  
[Anonymous], 2007, P IEEE INT WORKSH SA
[3]  
[Anonymous], 2003, Strategies for Feedback Linearisation: A Dynamic Neural Network Approach
[4]  
Araki N, 2005, IEEE C DEC CONTR EUR, P1040
[5]   A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].
Arulampalam, MS ;
Maskell, S ;
Gordon, N ;
Clapp, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :174-188
[6]   Nonlinear model calibration of a shear wall building using time and frequency data features [J].
Asgarieh, Eliyar ;
Moaveni, Babak ;
Barbosa, Andre R. ;
Chatzi, Eleni .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 85 :236-251
[7]   Adaptive control of flexible structures using a nonlinear vibration absorber [J].
Ashour, ON ;
Nayfeh, AH .
NONLINEAR DYNAMICS, 2002, 28 (3-4) :309-322
[8]   Stochastic system identification via particle and sigma-point Kalman filtering [J].
Azam, S. Eftekhar ;
Bagherinia, M. ;
Mariani, S. .
SCIENTIA IRANICA, 2012, 19 (04) :982-991
[9]   Parallelized sigma-point Kalman filtering for structural dynamics [J].
Azam, Saeed Eftekhar ;
Ghisi, Aldo ;
Mariani, Stefano .
COMPUTERS & STRUCTURES, 2012, 92-93 :193-205
[10]   A European Association for the Control of Structures joint perspective. Recent studies in civil structural control across Europe [J].
Basu, Biswajit ;
Bursi, Oreste S. ;
Casciati, Fabio ;
Casciati, Sara ;
Del Grosso, Andrea E. ;
Domaneschi, Marco ;
Faravelli, Lucia ;
Holnicki-Szulc, Jan ;
Irschik, Hans ;
Krommer, Michael ;
Lepidi, Marco ;
Martelli, Alessandro ;
Ozturk, Baki ;
Pozo, Francesc ;
Pujol, Gisela ;
Rakicevic, Zoran ;
Rodellar, Jose .
STRUCTURAL CONTROL & HEALTH MONITORING, 2014, 21 (12) :1414-1436