Effect of Selective Accommodation on Soot Aggregate Shielding in Time-Resolved Laser-Induced Incandescence Experiments

被引:10
|
作者
Daun, K. J. [1 ]
机构
[1] Univ Waterloo, Dept Mech & Mechatron Engn, Waterloo, ON N2L 3G1, Canada
来源
关键词
combustion; laser-induced incandescence; soot; free-molecular conduction; gas-surface scattering; PRIMARY PARTICLE; MORPHOLOGY; FLAME;
D O I
10.1115/1.4001614
中图分类号
O414.1 [热力学];
学科分类号
摘要
Time-resolved laser-induced incandescence is an emerging diagnostic for characterizing primary particle size distributions within soot-laden aerosols. This measurement requires an accurate model of heat conduction between the laser-energized soot and the surrounding gas, which is complicated by the fractal-like structure of soot aggregates since primary particles on the aggregate exterior shield the interior from approaching gas molecules. Previous efforts to characterize aggregate shielding through direct simulation Monte Carlo analysis assume a Maxwell scattering kernel, which poorly represents actual gas/surface interactions. This paper shows how selective thermal accommodation into the translational and rotational modes of the gas molecule influences the aggregate shielding effect using the Cercignani-Lampis-Lord kernel and thermal accommodation coefficients derived from molecular dynamics simulations. [DOI:10.1115/1.4001614]
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [1] EFFECT OF SELECTIVE ACCOMMODATION ON SOOT AGGREGATE SHIELDING IN TIME-RESOLVED LASER-INDUCED INCANDESCENCE EXPERIMENTS
    Daun, K. J.
    IMECE2009: PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, VOL 3, 2010, : 255 - 264
  • [2] Investigation of Thermal Accommodation Coefficients in Time-Resolved Laser-Induced Incandescence
    Daun, K. J.
    Smallwood, G. J.
    Liu, F.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2008, 130 (12): : 1 - 9
  • [3] Influence of soot particle aggregation on time-resolved laser-induced incandescence signals
    H. Bladh
    J. Johnsson
    J. Rissler
    H. Abdulhamid
    N.-E. Olofsson
    M. Sanati
    J. Pagels
    P.-E. Bengtsson
    Applied Physics B, 2011, 104 : 331 - 341
  • [4] Candle flame soot sizing by planar time-resolved laser-induced incandescence
    Ignacio Verdugo
    Juan José Cruz
    Emilio Álvarez
    Pedro Reszka
    Luís Fernando Figueira da Silva
    Andrés Fuentes
    Scientific Reports, 10
  • [5] Candle flame soot sizing by planar time-resolved laser-induced incandescence
    Verdugo, Ignacio
    Jose Cruz, Juan
    Alvarez, Emilio
    Reszka, Pedro
    Figueira da Silva, Luis Fernando
    Fuentes, Andres
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [6] Influence of soot particle aggregation on time-resolved laser-induced incandescence signals
    Bladh, H.
    Johnsson, J.
    Rissler, J.
    Abdulhamid, H.
    Olofsson, N. -E.
    Sanati, M.
    Pagels, J.
    Bengtsson, P. -E.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2011, 104 (02): : 331 - 341
  • [7] Time-resolved laser-induced incandescence of soot: the influence of experimental factors and microphysical mechanisms
    Michelsen, HA
    Witze, PO
    Kayes, D
    Hochgreb, S
    APPLIED OPTICS, 2003, 42 (27) : 5577 - 5590
  • [8] THERMAL ACCOMMODATION COEFFICIENTS BETWEEN NITROGEN AND SOOT IN LASER-INDUCED INCANDESCENCE EXPERIMENTS
    Daun, K. J.
    IMECE 2008: PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, VOL 3, 2008, : 425 - 434
  • [9] Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII)
    Schraml, S
    Dankers, S
    Bader, K
    Will, S
    Leipertz, A
    COMBUSTION AND FLAME, 2000, 120 (04) : 439 - 450
  • [10] Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence
    Will, Stefan
    Schraml, Stephan
    Bader, Katharina
    Leipertz, Alfred
    Applied Optics, 1998, 37 (24): : 5647 - 5658