Gradient estimates for nonlinear elliptic double obstacle problems

被引:10
作者
Byun, Sun-Sig [1 ,2 ]
Ryu, Seungjin [3 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[3] Univ Seoul, Dept Math, Seoul 02504, South Korea
关键词
Calderon-Zygmund estimate; Double obstacle; Measurable nonlinearity; POTENTIALS; REGULARITY; EQUATIONS;
D O I
10.1016/j.na.2018.08.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a nonlinear elliptic double obstacle problem with irregular data and establish an optimal Calderon-Zygmund theory. The partial differential operator is of the p-Laplacian type and includes merely measurable coefficients in one variable. We prove that the gradient of a weak solution is as integrable as both the gradient of assigned two obstacles and the nonhomogeneous divergence term under a small BMO semi-norm assumption on the coefficients in the other variables. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 31 条
[1]   Gradient estimates for a class of parabolic systems [J].
Acerbi, Emilio ;
Mingione, Giuseppe .
DUKE MATHEMATICAL JOURNAL, 2007, 136 (02) :285-320
[2]  
ALT HW, 1983, MATH Z, V183, P311
[3]  
[Anonymous], 1987, OBSTACLE PROBLEMS MA
[4]  
[Anonymous], 1997, Amer. Math. Soc.
[5]  
[Anonymous], 1982, PURE APPL MATH
[6]   Lorentz estimates for obstacle parabolic problems [J].
Baroni, Paolo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 96 :167-188
[7]   Degenerate problems with irregular obstacles [J].
Boegelein, Verena ;
Duzaar, Frank ;
Mingione, Giuseppe .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 650 :107-160
[8]   Self-improving property of nonlinear higher order parabolic systems near the boundary [J].
Boegelein, Verena ;
Parviainen, Mikko .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2010, 17 (01) :21-54
[9]   Parabolic Obstacle Problem with Measurable Data in Generalized Morrey Spaces [J].
Byun, Sun-Sig ;
Softova, Lubomira .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2016, 35 (02) :153-171
[10]   ELLIPTIC OBSTACLE PROBLEMS WITH MEASURABLE COEFFICIENTS IN NON-SMOOTH DOMAINS [J].
Byun, Sun-Sig ;
Palagachev, Dian K. ;
Ryu, Seungjin .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2014, 35 (7-9) :893-910