Interfacial self-healing of nanocomposite hydrogels: Theory and experiment

被引:32
|
作者
Wang, Qiming [1 ]
Gao, Zheming [1 ]
Yu, Kunhao [1 ]
机构
[1] Univ Southern Calif, Sonny Astani Dept Civil & Environm Engn, Los Angeles, CA 90089 USA
关键词
Self-healing polymer; Dynamic bond; Interfacial strength; Nanocomposite hydrogel; HIGH MECHANICAL STRENGTH; TO-GLOBULE TRANSITION; POLYMER NETWORKS; CONSTITUTIVE MODEL; LARGE-DEFORMATION; TOUGH HYDROGELS; CROSS-LINKS; CLAY; GELS; BEHAVIOR;
D O I
10.1016/j.jmps.2017.08.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Polymers with dynamic bonds are able to self-heal their fractured interfaces and restore the mechanical strengths. It is largely elusive how to analytically model this self-healing behavior to construct the mechanistic relationship between the self-healing properties (e.g., healed interfacial strength and equilibrium healing time) and the material compositions and healing conditions. Here, we take a self-healable nanocomposite hydrogel as an example to illustrate an interfacial self-healing theory for hydrogels with dynamic bonds. In the theory, we consider the free polymer chains diffuse across the interface and reform crosslinks to bridge the interface. We analytically reveal that the healed strengths of nanocomposite hydrogels increase with the healing time in an error-function-like form. The equilibrium self-healing time of the full-strength recovery decreases with the temperature and increases with the nanoparticle concentration. We further analytically reveal that the healed interfacial strength decreases with increasing delaying time before the healing process. The theoretical results quantitatively match with our experiments on nanosilica hydrogels, and also agree well with other researchers' experiments on nanoclay hydrogels. We expect that this theory would open promising avenues for quantitative understanding of the self-healing mechanics of various polymers with dynamic bonds, and offer insights for designing high-performance self-healing polymers. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:288 / 306
页数:19
相关论文
共 50 条
  • [1] Self-healing in Nanocomposite Hydrogels
    Haraguchi, Kazutoshi
    Uyama, Kazuhisa
    Tanimoto, Hisashi
    MACROMOLECULAR RAPID COMMUNICATIONS, 2011, 32 (16) : 1253 - 1258
  • [2] Conductive nanocomposite hydrogels with self-healing property
    Peng, Rengui
    Yu, Yang
    Chen, Sheng
    Yang, Yingkui
    Tang, Youhong
    RSC ADVANCES, 2014, 4 (66): : 35149 - 35155
  • [3] Supramolecular Assembly of Self-Healing Nanocomposite Hydrogels
    Gerth, Marieke
    Bohdan, Malgorzata
    Fokkink, Remco
    Voets, Ilja K.
    van der Gucht, Jasper
    Sprakel, Joris
    MACROMOLECULAR RAPID COMMUNICATIONS, 2014, 35 (24) : 2065 - 2070
  • [4] Hydrophobically modified nanocomposite hydrogels with self-healing ability
    Akca, Ozge
    Yetiskin, Berkant
    Okay, Oguz
    JOURNAL OF APPLIED POLYMER SCIENCE, 2020, 137 (28)
  • [5] Self-Healing Hydrogels
    Taylor, Danielle Lynne
    Panhuis, Marc In Het
    ADVANCED MATERIALS, 2016, 28 (41) : 9060 - 9093
  • [6] Fabrication and Property of Electric-induced Self-healing Nanocomposite Hydrogels
    Wu, Bai-shen
    Ye, Yuan-chao
    Li, Zhen
    Liu, Zhi-yuan
    Pei, Yuan-yuan
    Chen, Chuan-rui
    Qin, Hai-li
    Liu, Huan-huan
    ACTA POLYMERICA SINICA, 2019, 50 (09): : 932 - 938
  • [7] Surface modification of graphene oxide for preparing self-healing nanocomposite hydrogels
    Ceper, Ezgi B.
    Su, Esra
    Okay, Oguz
    Guney, Orhan
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2022, 33 (07) : 2276 - 2288
  • [8] Silica-based Janus nanosheets for self-healing nanocomposite hydrogels
    Li, Mengnan
    Li, Xiuli
    Li, Chunyu
    Liu, Hongchen
    Wang, Wenxiang
    Bai, Liangjiu
    Chen, Hou
    Yang, Lixia
    EUROPEAN POLYMER JOURNAL, 2021, 155
  • [9] Self-healing zwitterionic sulfobetaine nanocomposite hydrogels with good mechanical properties
    Lin, Yinlei
    Zeng, Zheng
    Li, Yuhao
    Sun, Sheng
    Liu, Xiaoting
    He, Deliu
    Li, Guangji
    RSC ADVANCES, 2019, 9 (55) : 31806 - 31811
  • [10] Enhancement of Self-Healing Efficacy of Conductive Nanocomposite Hydrogels by Polysaccharide Modifiers
    Tomic, Natasa Z.
    Ghodhbane, Myriam
    Matouk, Zineb
    AlShehhi, Nujood
    Busa, Chiara
    POLYMERS, 2023, 15 (03)