ROCK inhibition and CNTF interact on intrinsic signalling pathways and differentially regulate survival and regeneration in retinal ganglion cells

被引:194
作者
Lingor, Paul [1 ,2 ]
Tonges, Lars [1 ]
Pieper, Nicole [1 ]
Bermel, Christina [1 ]
Barski, Elisabeth [1 ,2 ]
Planchamp, Veronique [1 ]
Baehr, Mathias [1 ,2 ]
机构
[1] Univ Gottingen, Univ Med, Dept Neurol, D-37073 Gottingen, Germany
[2] DFG Res Ctr Mol Physiol Brain, Gottingen, Germany
关键词
retinal ganglion cells; CNTF; rho kinase; axotomy; regeneration;
D O I
10.1093/brain/awm284
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Functional regeneration in the CNS is limited by lesion-induced neuronal apoptosis and an environment inhibiting axonal elongation. A principal, yet unresolved question is the interaction between these two major factors. We thus evaluated the role of pharmacological inhibition of rho kinase (ROCK), a key mediator of myelin-derived axonal growth inhibition and CNTF, a potent neurotrophic factor for retinal ganglion cells (RGC), in models of retinal ganglion cell apoptosis and neurite outgrowth/regeneration in vitro and in vivo. Here, we show for the first time that the ROCK inhibitor Y-27632 significantly enhanced survival of RGC in vitro and in vivo. In vitro, the co-application of CNTF and Y-27632 potentiated the effect of either substance alone. ROCK inhibition resulted in the activation of the intrinsic MAPK pathway, and the combination of CNTF and Y-27632 resulted in even more pronounced MAPK activation. While CNTF also induced STAT3 phosphorylation, the additional application of ROCK inhibitor surprisingly diminished the effects of CNTF on STAT3 phosphorylation. ROCK activity was also decreased in an additive manner by both substances. In vivo, both CNTF and Y-27632 enhanced regeneration of RGC into the non-permissive optic nerve crush model and additive effects were observed after combination treatment. Further evaluation using specific inhibitors delineate STAT3 as a negative regulator of neurite growth and positive regulator of cell survival, while MAPK and Akt support neurite growth. These results show that next to neurotrophic factors ROCK inhibition by Y-27632 potently supports survival of lesioned adult CNS neurons. Co-administration of CNTF and Y-27632 results in additive effects on neurite outgrowth and regeneration. The interaction of intracellular signalling pathways may, however, attenuate more pronounced synergy and has to be taken into account for future treatment strategies.
引用
收藏
页码:250 / 263
页数:14
相关论文
共 42 条
[1]   The outgrowth response of the axons of developing and regenerating rat retinal ganglion cells in vitro to neurotrophin treatment [J].
Avwenagha, O ;
Campbell, G ;
Bird, MM .
JOURNAL OF NEUROCYTOLOGY, 2003, 32 (09) :1055-1075
[2]   Live or let die -: retinal ganglion cell death and survival during development and in the lesioned adult CNS [J].
Bähr, M .
TRENDS IN NEUROSCIENCES, 2000, 23 (10) :483-490
[3]   IMMUNOLOGICAL, MORPHOLOGICAL, AND ELECTROPHYSIOLOGICAL VARIATION AMONG RETINAL GANGLION-CELLS PURIFIED BY PANNING [J].
BARRES, BA ;
SILVERSTEIN, BE ;
COREY, DP ;
CHUN, LLY .
NEURON, 1988, 1 (09) :791-803
[4]   Ephrin-B3 is a myelin-based inhibitor of neurite outgrowth [J].
Benson, MD ;
Romero, MI ;
Lush, ME ;
Lu, QR ;
Henkemeyer, M ;
Parada, LF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (30) :10694-10699
[5]   AXOTOMY RESULTS IN DELAYED DEATH AND APOPTOSIS OF RETINAL GANGLION-CELLS IN ADULT-RATS [J].
BERKELAAR, M ;
CLARKE, DB ;
WANG, YC ;
BRAY, GM ;
AGUAYO, AJ .
JOURNAL OF NEUROSCIENCE, 1994, 14 (07) :4368-4374
[6]   Application of Rho antagonist to neuronal cell bodies promotes neurite growth in compartmented cultures and regeneration of retinal ganglion cell axons in the optic nerve of adult rats [J].
Bertrand, J ;
Winton, MJ ;
Rodriguez-Hernandez, N ;
Campenot, RB ;
McKerracher, L .
JOURNAL OF NEUROSCIENCE, 2005, 25 (05) :1113-1121
[7]   c-Jun expression in adult rat dorsal root ganglion neurons: Differential response after central or peripheral axotomy [J].
Broude, E ;
McAtee, M ;
Kelley, MS ;
Bregman, BS .
EXPERIMENTAL NEUROLOGY, 1997, 148 (01) :367-377
[8]   The ability of axons to regenerate their growth cones depends on axonal type and age, and is regulated by calcium, cAMP and ERK [J].
Chierzi, S ;
Ratto, GM ;
Verma, P ;
Fawcett, JW .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2005, 21 (08) :2051-2062
[9]   Protein kinase Cδ-mediated proteasomal degradation of MAP kinase phosphatase-1 contributes to glutamate-induced neuronal cell death [J].
Choi, BH ;
Hur, EM ;
Lee, JH ;
Jun, DJ ;
Kim, KT .
JOURNAL OF CELL SCIENCE, 2006, 119 (07) :1329-1340
[10]   Intraocular elevation of cyclic AMP potentiates ciliary neurotrophic factor-induced regeneration of adult rat retinal ganglion cell axons [J].
Cui, Q ;
Yip, HK ;
Zhao, RCH ;
So, KF ;
Harvey, AR .
MOLECULAR AND CELLULAR NEUROSCIENCE, 2003, 22 (01) :49-61