In-situ construction of Li-Mg/LiF conductive layer to achieve an intimate lithium-garnet interface for all-solid-state Li metal battery

被引:125
作者
Jiang, Jinlong [1 ]
Ou, Yanghao [1 ]
Lu, Shangying [1 ]
Shen, Chao [1 ]
Li, Bobo [1 ]
Liu, Xiaoyu [2 ]
Jiang, Yong [1 ]
Zhao, Bing [1 ,2 ]
Zhang, Jiujun [1 ,2 ]
机构
[1] Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Inst Sustainable Energy, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Garnet solid electrolyte; Mixed conductive layer; Li -Mg alloy; LiF; All -inorganic interface layer; Li dendrites; All -solid-state Li metal battery; ELECTROCHEMICAL PERFORMANCE; ELECTROLYTE; LI7LA3ZR2O12; INTERPHASE;
D O I
10.1016/j.ensm.2022.06.011
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Garnet-type Li6.75La3Zr1.75Ta0.25O12 (LLZTO) is a promising solid electrolyte due to its high ionic conductivity and good stability to Li. However, poor wettability of LLZTO|Li interface causes huge contact impedance and easily inclined formation of Li dendrites. Herein, a 700 nm-thick MgF2 sol film is constructed on the LLZTO pellet by a spin coating method, then an all-inorganic mixed conductive layer of Li-Mg alloy/LiF (LMF) is firstly obtained by the conversion reaction with molten Li, without adding any binder or filmogen with high resistance and low migration rate. Density functional theory (DFT) calculation results show that LMF layer has perfect interfacial contact with LLZTO and Li metal, as well as excellent electronic insulativity and ionic conductivity to prevent electron tunneling and attacking the LLZTO. The interface impedance of Li|LMF@LLZTO|Li symmetrical battery is significantly reduced from 1850 to 25 omega cm2, and an excellent cycle stability over 1000 h is obtained at 0.3 mA cm-2 with a low overpotential of 62 mV. Moreover, the Li|LMF@LLZTO|LiFePO4 full battery shows outstanding rate capacity and cycle performance, revealing the practical feasibility of the interface modification strategy for all-solid-state Li metal battery.
引用
收藏
页码:810 / 818
页数:9
相关论文
共 54 条
[1]   Electrochemical performance of a garnet solid electrolyte based lithium metal battery with interface modification [J].
Alexander, George V. ;
Rosero-Navarro, Nataly Carolina ;
Miura, Akira ;
Tadanaga, Kiyoharu ;
Murugan, Ramaswamy .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (42) :21018-21028
[2]   Highly Conductive Garnet-Type Electrolytes: Access to Li6.5La3Zr1.5Ta0.5O12 Prepared by Molten Salt and Solid-State Methods [J].
Badami, Pavan ;
Weller, J. Mark ;
Wahab, Abdul ;
Redhammer, Guenther ;
Ladenstein, Lukas ;
Rettenwander, Daniel ;
Wilkening, Martin ;
Chan, Candace K. ;
Kannan, Arunachala Nadar Mada .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (43) :48580-48590
[3]   ELECTRICAL-PROPERTIES OF AMORPHOUS LITHIUM ELECTROLYTE THIN-FILMS [J].
BATES, JB ;
DUDNEY, NJ ;
GRUZALSKI, GR ;
ZUHR, RA ;
CHOUDHURY, A ;
LUCK, CF ;
ROBERTSON, JD .
SOLID STATE IONICS, 1992, 53 :647-654
[4]   Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors "Li7La3Zr2O12" and Li7-xLa3Zr2-xTaxO12 with garnet-type structure [J].
Buschmann, Henrik ;
Berendts, Stefan ;
Mogwitz, Boris ;
Janek, Juergen .
JOURNAL OF POWER SOURCES, 2012, 206 :236-244
[5]   Robust Conversion-Type Li/Garnet interphases from metal salt solutions [J].
Cai, Mingli ;
Lu, Yang ;
Yao, Liu ;
Jin, Jun ;
Wen, Zhaoyin .
CHEMICAL ENGINEERING JOURNAL, 2021, 417
[6]   Bridging Interparticle Li+ Conduction in a Soft Ceramic Oxide Electrolyte [J].
Chen, Wan-Ping ;
Duan, Hui ;
Shi, Ji-Lei ;
Qian, Yumin ;
Wan, Jing ;
Zhang, Xu-Dong ;
Sheng, Hang ;
Guan, Bo ;
Wen, Rui ;
Yin, Ya-Xia ;
Xin, Sen ;
Guo, Yu-Guo ;
Wan, Li-Jun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (15) :5717-5726
[7]   The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes [J].
Cheng, Lei ;
Crumlin, Ethan J. ;
Chen, Wei ;
Qiao, Ruimin ;
Hou, Huaming ;
Lux, Simon Franz ;
Zorba, Vassilia ;
Russo, Richard ;
Kostecki, Robert ;
Liu, Zhi ;
Persson, Kristin ;
Yang, Wanli ;
Cabana, Jordi ;
Richardson, Thomas ;
Chen, Guoying ;
Doeff, Marca .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (34) :18294-18300
[8]   Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries [J].
Chi, Shang-Sen ;
Liu, Yongchang ;
Zhao, Ning ;
Guo, Xiangxin ;
Nan, Ce-Wen ;
Fan, Li-Zhen .
ENERGY STORAGE MATERIALS, 2019, 17 :309-316
[9]   Tuning the Anode-Electrolyte Interface Chemistry for Garnet-Based Solid-State Li Metal Batteries [J].
Deng, Tao ;
Ji, Xiao ;
Zhao, Yang ;
Cao, Longsheng ;
Li, Shuang ;
Hwang, Sooyeon ;
Luo, Chao ;
Wang, Pengfei ;
Jia, Haiping ;
Fan, Xiulin ;
Lu, Xiaochuan ;
Su, Dong ;
Sun, Xueliang ;
Wang, Chunsheng ;
Zhang, Ji-Guang .
ADVANCED MATERIALS, 2020, 32 (23)
[10]   Building an Air Stable and Lithium Deposition Regulable Garnet Interface from Moderate-Temperature Conversion Chemistry [J].
Duan, Hui ;
Chen, Wan-Ping ;
Fan, Min ;
Wang, Wen-Peng ;
Yu, Le ;
Tan, Shuang-Jie ;
Chen, Xiang ;
Zhang, Qiang ;
Xin, Sen ;
Wan, Li-Jun ;
Guo, Yu-Guo .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (29) :12069-12075