Tamely ramified supercuspidal representations

被引:0
作者
Morris, L
机构
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 1996年 / 29卷 / 05期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected reductive group defined over a complete local non archimedean field F, and let G denote its F-valued points. Let (pi, V) be an irreducible admissible representation of G, and let (sigma, W) be a representation of a parahoric subgroup P which is trivial on the prounipotent radical U of P. We say that (pi, V) contains (sigma, W) if, when restricted to P, the sigma-isotypic part V-sigma is nontrivial. Assume that (sigma, W) is irreducible cuspidal on the finite group of Lie type P/U, and that V-sigma not equal 0. We show that (pi, V) is supercuspidal if and only if P is maximal; in this case pi is compactly induced from the normaliser of P. We then classify supercuspidal representations containing unipotent cuspidal representations, provided G is an inner form of a split adjoint group, following a conjecture of G. Lusztig.
引用
收藏
页码:639 / 667
页数:29
相关论文
共 26 条
[1]  
BOURBAKI N, 1973, ALGEBRE, pCH9
[2]  
Bruhat F., 1984, PUBL MATH-PARIS, V60, P5
[3]  
BUSHNELL CJ, 1993, ANN MATH STUDIES, V129
[4]  
CARAYOL H, 1984, ANN SCI ECOLE NORM S, V17, P191
[5]  
Carter R.W., 1985, FINITE GROUPS LIE TY
[6]  
Cartier P., 1979, P S PURE MATH 1, V33, P111
[7]  
Curtis C. W., 1981, Methods of Representation Theory-With Applications to Finite Groups and Orders
[8]  
DIGNE F, 1991, LONDON MATH SOC STUD, V21
[9]  
HOWLETT RB, 1980, J LOND MATH SOC, V21, P62
[10]   STABLE TRACE FORMULA - CUSPIDAL TEMPERED TERMS [J].
KOTTWITZ, RE .
DUKE MATHEMATICAL JOURNAL, 1984, 51 (03) :611-650