Minimum Consistent Subset Problem for Trees

被引:1
|
作者
Dey, Sanjana [1 ]
Maheshwari, Anil [2 ]
Nandy, Subhas C. [1 ]
机构
[1] Indian Stat Inst, ACM Unit, Kolkata, India
[2] Carleton Univ, Sch Comp Sci, Ottawa, ON, Canada
来源
FUNDAMENTALS OF COMPUTATION THEORY, FCT 2021 | 2021年 / 12867卷
关键词
Consistent subset; Graphs; Trees; Optimal algorithm;
D O I
10.1007/978-3-030-86593-1_14
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the minimum consistent subset (MCS) problem, a connected simple undirected graph G = (V, E) is given in which each vertex is colored by one of the possible colors {c(1), c(2), ..., c(k)}; the objective is to compute a minimum size subset C subset of V such that for each vertex v is an element of V, one of its nearest neighbors in C, with respect to the hop-distance, is of the same color as the color of v. The decision version of the MCS problem is NP-complete even for planar graphs. We propose a polynomial-time algorithm for computing a minimum consistent subset of a bi-chromatic tree.
引用
收藏
页码:204 / 216
页数:13
相关论文
共 50 条
  • [21] Upward drawings of trees on the minimum number of layers
    Alam, Md. Jawaherul
    Samee, Md. Abul Hassan
    Rabbi, Md. Mashfiqui
    Rahman, Md. Saidur
    WALCOM: ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2008, 4921 : 88 - 99
  • [22] ON THE MINIMUM NUMBER OF SPANNING TREES IN CUBIC MULTIGRAPHS
    Bogdanowicz, Zbigniew R.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (01) : 149 - 159
  • [23] Degree-bounded minimum spanning trees
    Jothi, Raja
    Raghavachari, Balaji
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (05) : 960 - 970
  • [24] UNIQUE MINIMUM SEMIPAIRED DOMINATING SETS IN TREES
    Haynes, Teresa W.
    Henning, Michael A.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2023, 43 (01) : 35 - 53
  • [25] MAXIMUM AND MINIMUM DEGREE CONDITIONS FOR EMBEDDING TREES
    Besomi, Guido
    Pavez-Signe, Matias
    Stein, Maya
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (04) : 2108 - 2123
  • [26] On minimum leaf spanning trees and a criticality notion
    Ozeki, Kenta
    Wiener, Gabor
    Zamfirescu, Carol T.
    DISCRETE MATHEMATICS, 2020, 343 (07)
  • [27] The minimum number of spanning trees in regular multigraphs
    Pekarek, Jakub
    Sereni, Jean-Sebastien
    Yilma, Zelealem B.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (04)
  • [28] On the Minimum Hub Set Problem
    Peng, Sheng-Lung
    Li, Yin-Te
    2014 IEEE 17th International Conference on Computational Science and Engineering (CSE), 2014, : 1134 - 1137
  • [29] On the Minimum Caterpillar Problem in Digraphs
    Okada, Taku
    Suzuki, Akira
    Ito, Takehiro
    Zhou, Xiao
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2014, E97A (03) : 848 - 857
  • [30] The Balanced Minimum Evolution Problem
    Catanzaro, Daniele
    Labbe, Martine
    Pesenti, Raffaele
    Salazar-Gonzalez, Juan-Jose
    INFORMS JOURNAL ON COMPUTING, 2012, 24 (02) : 276 - 294