Greedy approximations by signed harmonic sums and the Thue-Morse sequence

被引:3
作者
Bettin, Sandro [1 ]
Molteni, Giuseppe [2 ]
Sanna, Carlo [3 ]
机构
[1] Univ Genoa, Dipartimento Matemat, Via Dodecaneso 35, I-16146 Genoa, Italy
[2] Univ Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy
[3] Politecn Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10129 Turin, Italy
关键词
Diophantine approximation; Egyptian fractions; Greedy algorithms; INFINITE; DIGITS; BOUNDS;
D O I
10.1016/j.aim.2020.107068
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a real number tau, we study the approximation of tau by signed harmonic sums sigma(N)(tau) := Sigma(n <= N) s(n)(tau)/n, the sequence of signs (s(N)(tau))(N is an element of N) is defined "greedily" by setting s(N+1)(tau) := +1 if sigma(N)(tau) <= tau, and s(N+1)(tau) := -1 otherwise. More precisely, we compute the limit points and the decay rate of the sequence (sigma(N)(tau) - tau)(N is an element of N). Moreover, we give an accurate description of the behavior of the sequence of signs (s(N)(tau))(N is an element of N,) highlighting a surprising connection with the Thue-Morse sequence. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:42
相关论文
共 35 条
  • [1] Allouche J.P., 2003, AUTOMATIC SEQUENCES, DOI [10.1017/CBO9780511546563, DOI 10.1017/CBO9780511546563]
  • [2] Allouche J.-P., 1998, SPRINGER SER DISCRET, P1, DOI DOI 10.1007/978-1-4471-0551-0_1
  • [3] More infinite products: Thue-Morse and the gamma function
    Allouche, J-P.
    Riasat, S.
    Shallit, J.
    [J]. RAMANUJAN JOURNAL, 2019, 49 (01) : 115 - 128
  • [4] Thue, Combinatorics on words, and conjectures inspired by the Thue-Morse sequence
    Allouche, Jean-Paul
    [J]. JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2015, 27 (02): : 375 - 388
  • [5] NEW CURIOUS INFINITE PRODUCTS
    ALLOUCHE, JP
    COHEN, H
    MENDES, M
    SHALLIT, JO
    [J]. ACTA ARITHMETICA, 1987, 49 (02) : 141 - 153
  • [6] DIRICHLET SERIES AND CURIOUS INFINITE PRODUCTS
    ALLOUCHE, JP
    COHEN, H
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1985, 17 (NOV) : 531 - 538
  • [7] ALLOUCHE JP, 1989, J LOND MATH SOC, V39, P193
  • [8] [Anonymous], 1978, Am. Math. Mon
  • [9] [Anonymous], 1851, COMPTES RENDUS ACAD
  • [10] [Anonymous], 1982, Math. Intelligencer, DOI 10.1007/BF03024244