LATTICES FROM ABELIAN EXTENSIONS AND ERROR-CORRECTING CODES

被引:0
作者
Interlando, J. Carmelo [1 ]
da Nobrega Neto, Trajano Pires [2 ]
Lopes Nunes, Jose Valter [3 ]
Dantas Lopes, Jose Othon [3 ]
机构
[1] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
[2] Univ Estadual Paulista, Dept Matemat, Sao Jose Do Rio Preto, Brazil
[3] Univ Fed Ceara, Dept Matemat, Fortaleza, Ceara, Brazil
关键词
lattice packing; cyclotomic fields; abelian extensions; error-correcting codes; quadratic forms; SPHERE PACKING PROBLEM;
D O I
10.1216/rmj.2021.51.903
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A construction of laminated lattices of full diversity in odd dimensions d with 3 <= d <= 15 is presented. The technique, which uses a combination of number fields and error-correcting codes, consists essentially of two steps: In the first, the Abelian number field F of degree d and prime conductor p, where p is a prime congruent to 1 modulo d, is considered. In the second, the lattice is obtained as the canonical embedding (Minkowski homomorphism) of a Z-submodule of O-F, the ring of integers of F. The submodule is defined by the parity-check matrices of a Reed-Solomon code over GF(p) and a suitably chosen linear code, typically either binary or over Z/4Z, the ring of integers modulo 4.
引用
收藏
页码:903 / 920
页数:18
相关论文
共 21 条
[1]  
[Anonymous], Sphere Packings, Lattices and Groups
[2]  
Bayer-Fluckiger E., IEEE T
[3]  
Bayer-Fluckiger E., 1998, ALGEBRAIC GEOMETRY H, P69
[4]   The minimum values of positive quadratic forms in six, seven and eight variables [J].
Blichfeldt, HF .
MATHEMATISCHE ZEITSCHRIFT, 1935, 39 :1-15
[5]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[6]   Good lattice constellations for both Rayleigh fading and Gaussian channels [J].
Boutros, J ;
Viterbo, E ;
Rastello, C ;
Belfiore, JC .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (02) :502-518
[7]  
Cassels JWS., 1997, An introduction to the geometry of numbers
[8]  
cinkin N.M., 1980, T MAT I STEKLOV, V152
[9]   The sphere packing problem in dimension 24 [J].
Cohn, Henry ;
Kumar, Abhinav ;
Miller, Stephen D. ;
Radchenko, Danylo ;
Viazovska, Maryna .
ANNALS OF MATHEMATICS, 2017, 185 (03) :1017-1033
[10]  
Conner P. E., SERIES PURE MATH, V2