LATTICES FROM ABELIAN EXTENSIONS AND ERROR-CORRECTING CODES

被引:0
作者
Interlando, J. Carmelo [1 ]
da Nobrega Neto, Trajano Pires [2 ]
Lopes Nunes, Jose Valter [3 ]
Dantas Lopes, Jose Othon [3 ]
机构
[1] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
[2] Univ Estadual Paulista, Dept Matemat, Sao Jose Do Rio Preto, Brazil
[3] Univ Fed Ceara, Dept Matemat, Fortaleza, Ceara, Brazil
关键词
lattice packing; cyclotomic fields; abelian extensions; error-correcting codes; quadratic forms; SPHERE PACKING PROBLEM;
D O I
10.1216/rmj.2021.51.903
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A construction of laminated lattices of full diversity in odd dimensions d with 3 <= d <= 15 is presented. The technique, which uses a combination of number fields and error-correcting codes, consists essentially of two steps: In the first, the Abelian number field F of degree d and prime conductor p, where p is a prime congruent to 1 modulo d, is considered. In the second, the lattice is obtained as the canonical embedding (Minkowski homomorphism) of a Z-submodule of O-F, the ring of integers of F. The submodule is defined by the parity-check matrices of a Reed-Solomon code over GF(p) and a suitably chosen linear code, typically either binary or over Z/4Z, the ring of integers modulo 4.
引用
收藏
页码:903 / 920
页数:18
相关论文
共 21 条
  • [1] [Anonymous], 1877, Math. Ann., DOI DOI 10.1007/BF01442667
  • [2] Bayer-Fluckiger E., IEEE T
  • [3] Bayer-Fluckiger E., 1998, ALGEBRAIC GEOMETRY H, P69
  • [4] The minimum values of positive quadratic forms in six, seven and eight variables
    Blichfeldt, HF
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1935, 39 : 1 - 15
  • [5] The Magma algebra system .1. The user language
    Bosma, W
    Cannon, J
    Playoust, C
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) : 235 - 265
  • [6] Good lattice constellations for both Rayleigh fading and Gaussian channels
    Boutros, J
    Viterbo, E
    Rastello, C
    Belfiore, JC
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (02) : 502 - 518
  • [7] Cassels JWS., 1997, INTRO GEOMETRY NUMBE
  • [8] cinkin N.M., 1980, T MAT I STEKLOV, V152
  • [9] The sphere packing problem in dimension 24
    Cohn, Henry
    Kumar, Abhinav
    Miller, Stephen D.
    Radchenko, Danylo
    Viazovska, Maryna
    [J]. ANNALS OF MATHEMATICS, 2017, 185 (03) : 1017 - 1033
  • [10] Conner P. E., SERIES PURE MATH, V2