共 50 条
Pathway analysis with next-generation sequencing data
被引:4
|作者:
Zhao, Jinying
[1
]
Zhu, Yun
[1
]
Boerwinkle, Eric
[2
]
Xiong, Momiao
[2
]
机构:
[1] Tulane Univ, Dept Epidemiol, Sch Publ Hlth & Trop Med, New Orleans, LA 70118 USA
[2] Univ Texas Hlth Sci Ctr Houston, Ctr Human Genet, Div Biostat, POB 20186, Houston, TX 77225 USA
基金:
美国国家卫生研究院;
关键词:
SET ENRICHMENT ANALYSIS;
THERAPEUTIC ANGIOGENESIS;
CARDIOVASCULAR-DISEASE;
RARE VARIANTS;
GENE;
ASSOCIATION;
SNPS;
D O I:
10.1038/ejhg.2014.121
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Although pathway analysis methods have been developed and successfully applied to association studies of common variants, the statistical methods for pathway-based association analysis of rare variants have not been well developed. Many investigators observed highly inflated false-positive rates and low power in pathway-based tests of association of rare variants. The inflated false-positive rates and low true-positive rates of the current methods are mainly due to their lack of ability to account for gametic phase disequilibrium. To overcome these serious limitations, we develop a novel statistic that is based on the smoothed functional principal component analysis (SFPCA) for pathway association tests with next-generation sequencing data. The developed statistic has the ability to capture position-level variant information and account for gametic phase disequilibrium. By intensive simulations, we demonstrate that the SFPCA-based statistic for testing pathway association with either rare or common or both rare and common variants has the correct type 1 error rates. Also the power of the SFPCA-based statistic and 22 additional existing statistics are evaluated. We found that the SFPCA-based statistic has a much higher power than other existing statistics in all the scenarios considered. To further evaluate its performance, the SFPCA-based statistic is applied to pathway analysis of exome sequencing data in the early-onset myocardial infarction (EOMI) project. We identify three pathways significantly associated with EOMI after the Bonferroni correction. In addition, our preliminary results show that the SFPCA-based statistic has much smaller P-values to identify pathway association than other existing methods.
引用
收藏
页码:507 / 515
页数:9
相关论文