Resilience of Malic Acid Natural Deep Eutectic Solvent Nanostructure to Solidification and Hydration

被引:145
作者
Hammond, Oliver S. [1 ,5 ]
Bowron, Daniel T. [2 ]
Jackson, Andrew J. [3 ,4 ]
Arnold, Thomas [6 ]
Sanchez-Fernandez, Adrian [5 ]
Tsapatsaris, Nikolaos [3 ]
Sakai, Victoria Garcia [2 ]
Edler, Karen J. [1 ,5 ]
机构
[1] Univ Bath, Ctr Sustainable Chem Technol, Bath BA2 7AY, Avon, England
[2] Rutherford Appleton Lab, ISIS Neutron & Muon Source, Sci & Technol Facil Council, Didcot OX11 0QX, Oxon, England
[3] European Spallat Source, Box 176, S-22100 Lund, Sweden
[4] Lund Univ, Div Phys Chem, Dept Chem, Box 124, S-22100 Lund, Sweden
[5] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England
[6] Rutherford Appleton Lab, Diamond Light Source, Sci & Technol Facil Council, Didcot OX11 0QX, Oxon, England
基金
英国科学技术设施理事会; 英国工程与自然科学研究理事会;
关键词
SODIUM DODECYL-SULFATE; CHOLINE CHLORIDE; NEUTRON-DIFFRACTION; IONIC LIQUIDS; MOLECULAR-DYNAMICS; AQUEOUS-SOLUTIONS; SELF-AGGREGATION; TEMPERATURE; MEDIA; UREA;
D O I
10.1021/acs.jpcb.7b05454
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Little is presently known about the unique nanostructure of deep eutectic solvents (DES). The order of the liquid solid phase transition is contended and whether DES-water mixtures are merely aqueous solutions, or have properties dominated by the eutectic pair, is unclear. Here, we unambiguously show the structure of choline chloride-malic acid (malicine) as a liquid, and also in solid and hydrated forms, using neutron total scattering on D/H isotope-substituted samples, and quasi elastic neutron scattering (QENS). Data were refined using empirical potential structure refinement. We show evidence for a stoichiometric complex ion cluster in the disordered liquid, with strong choline chloride bonding and a hydrogen bond donor (HBD) contribution. The 1:1 eutectic stoichiometry makes these ionic domains more well-defined, with less HBD clustering than seen previously for reline. There is minimal structural difference for the solidified material, demonstrating that this DES solidification is a glass transition rather than a first order phase change. QENS data support this by showing a gradual change in solvent dynamics rather than a step change. The DES structure is mostly retained upon hydration, with water acting both as a secondary smaller HBD at closer range to choline than malic acid, and forming transient wormlike aggregates. This new understanding of DES structure will aid understanding of the properties of these novel green solvents on the molecular length scale in chemical processes, as well as giving an insight into the apparent role of natural DESs in plant physiology.
引用
收藏
页码:7473 / 7483
页数:11
相关论文
共 54 条
[1]   Glycerol eutectics as sustainable solvent systems [J].
Abbott, Andrew P. ;
Harris, Robert C. ;
Ryder, Karl S. ;
D'Agostino, Carmine ;
Gladden, Lynn F. ;
Mantle, Mick D. .
GREEN CHEMISTRY, 2011, 13 (01) :82-90
[2]   Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains [J].
Abbott, AP ;
Capper, G ;
Davies, DL ;
Munro, HL ;
Rasheed, RK ;
Tambyrajah, V .
CHEMICAL COMMUNICATIONS, 2001, (19) :2010-2011
[3]   Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids [J].
Abbott, AP ;
Boothby, D ;
Capper, G ;
Davies, DL ;
Rasheed, RK .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (29) :9142-9147
[4]   Mantid-Data analysis and visualization package for neutron scattering and μ SR experiments [J].
Arnold, O. ;
Bilheux, J. C. ;
Borreguero, J. M. ;
Buts, A. ;
Campbell, S. I. ;
Chapon, L. ;
Doucet, M. ;
Draper, N. ;
Leal, R. Ferraz ;
Gigg, M. A. ;
Lynch, V. E. ;
Markvardsen, A. ;
Mikkelson, D. J. ;
Mikkelson, R. L. ;
Miller, R. ;
Palmen, K. ;
Parker, P. ;
Passos, G. ;
Perring, T. G. ;
Peterson, P. F. ;
Ren, S. ;
Reuter, M. A. ;
Savici, A. T. ;
Taylor, J. W. ;
Taylor, R. J. ;
Tolchenoy, R. ;
Zhou, W. ;
Zikoysky, J. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2014, 764 :156-166
[5]   Surfactant Behavior of Sodium Dodecylsulfate in Deep Eutectic Solvent Choline Chloride/Urea [J].
Arnold, T. ;
Jackson, A. J. ;
Sanchez-Fernandez, A. ;
Magnone, D. ;
Terry, A. E. ;
Edler, K. J. .
LANGMUIR, 2015, 31 (47) :12894-12902
[6]   Doubly ionic hydrogen bond interactions within the choline chloride-urea deep eutectic solvent [J].
Ashworth, Claire R. ;
Matthews, Richard P. ;
Welton, Tom ;
Hunt, Patricia A. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (27) :18145-18160
[7]   Structure and Dynamics of 1-Ethyl-3-methylimidazolium Acetate via Molecular Dynamics and Neutron Diffraction [J].
Bowron, D. T. ;
D'Agostino, C. ;
Gladden, L. F. ;
Hardacre, C. ;
Holbrey, J. D. ;
Lagunas, M. C. ;
McGregor, J. ;
Mantle, M. D. ;
Mullan, C. L. ;
Youngs, T. G. A. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (23) :7760-7768
[8]   Spontaneous vesicle formation in a deep eutectic solvent [J].
Bryant, Saffron J. ;
Atkin, Rob ;
Warr, Gregory G. .
SOFT MATTER, 2016, 12 (06) :1645-1648
[9]   THE DESIGN OF THE IRIS INELASTIC NEUTRON SPECTROMETER AND IMPROVEMENTS TO ITS ANALYZERS [J].
CARLILE, CJ ;
ADAMS, MA .
PHYSICA B, 1992, 182 (04) :431-440
[10]   Are Natural Deep Eutectic Solvents the Missing Link in Understanding Cellular Metabolism and Physiology? [J].
Choi, Young Hae ;
van Spronsen, Jaap ;
Dai, Yuntao ;
Verberne, Marianne ;
Hollmann, Frank ;
Arends, Isabel W. C. E. ;
Witkamp, Geert-Jan ;
Verpoorte, Robert .
PLANT PHYSIOLOGY, 2011, 156 (04) :1701-1705