Note on the sum of the smallest and largest eigenvalues of a triangle-free graph

被引:5
作者
Csikvari, Peter [1 ,2 ]
机构
[1] Alfred Renyi Inst Math, Realtanoda Utca 13-15, H-1053 Budapest, Hungary
[2] Eotvos Lorand Univ, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
关键词
Eigenvalues; Triangle-free graphs;
D O I
10.1016/j.laa.2022.06.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a triangle-free graph on n vertices with adjacency matrix eigenvalues mu 1(G) >= mu(2)(G) >= . . . >= mu(n)(G). In this paper we study the quantity mu(1)(G) + mu(n)(G). We prove that for any triangle-free graph G we have mu(1)(G) + mu(n)(G) <= (3 - 2 root 2)n. This was proved for regular graphs by Brandt, we show that the condition on regularity is not necessary. We also prove that among triangle-free strongly regular graphs the Higman-Sims graph achieves the maximum of mu(1)(G) + mu n(G)/n . (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:92 / 97
页数:6
相关论文
共 5 条
[1]  
Balogh J., ARXIV PREPRINT
[2]   The local density of triangle-free graphs [J].
Brandt, S .
DISCRETE MATHEMATICS, 1998, 183 (1-3) :17-25
[3]  
Brouwer A.E., Parameters of strongly regular graphs
[4]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[5]   The clique number and the smallest Q-eigenvalue of graphs [J].
de Lima, Leonardo ;
Nikiforov, Vladimir ;
Oliveira, Carla .
DISCRETE MATHEMATICS, 2016, 339 (06) :1744-1752