A Generalization of the Polia-Szego and Makai Inequalities for Torsional Rigidity

被引:0
作者
Gafiyatullina, L., I [1 ]
Salakhudinov, R. G. [1 ]
机构
[1] Kazan Fed Univ, 18 Kremlyovskaya Str, Kazan 420008, Russia
关键词
torsional rigidity; Euclidean moments of domain; with respect to its boundary; isoperimetric inequalities; convex; domains; distance to the boundary of domain;
D O I
10.3103/S1066369X21110086
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish some generalizations of the classical inequalities by Polya-Szego and Makai about torsional rigidity of convex domains. The main idea of the proof is in using an exact isoperimetric inequality for Euclidean moments of domains. This inequality has a wide class of extremal regions and is of independent interest.
引用
收藏
页码:76 / 80
页数:5
相关论文
共 12 条
  • [1] [Anonymous], 1964, Variational Methods in Mathematical Physics
  • [2] Avkhadiev F.G., 1996, CONFORMAL MAPPINGS B
  • [3] Avkhadiev F.G., 1996, P INT C CHEB READ, P12
  • [4] Solution of the generalized Saint Venant problem
    Avkhadiev, FG
    [J]. SBORNIK MATHEMATICS, 1998, 189 (11-12) : 1739 - 1748
  • [5] Makai E., 1962, STUDIES MATH ANAL RE, P227
  • [6] Payne L. E., 1962, STUDIES MATH ANAL RE, P270
  • [7] Polya G., 1951, Isoperimetric inequalities in mathematical physics
  • [8] Saint-Venant A.J.C.B., 1853, Memoires Presentees Par Divers Savants a L'Academie Des Sciences, V14, P233
  • [9] Salahudinov RG, 2001, J INEQUAL APPL, V6, P253
  • [10] TORSIONAL RIGIDITY AND EUCLIDEAN MOMENTS OF A CONVEX DOMAIN
    Salakhudinov, R. G.
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2016, 67 (04) : 669 - 681