Systems of reaction diffusion equations and their symmetry properties

被引:22
作者
Nikitin, AG
Wiltshire, RJ
机构
[1] Natl Acad Sci Ukraine, Inst Math, Kiev 4, Ukraine
[2] Univ Glamorgan, Sch Technol, Div Math, Pontypridd CF37 1DL, M Glam, Wales
关键词
D O I
10.1063/1.1331318
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A constructive algorithm is proposed for the investigation of symmetries of partial differential equations. The algorithm is used to present classical Lie symmetries of systems of two nonlinear reaction diffusion equations. (C) 2001 American Institute of Physics.
引用
收藏
页码:1666 / 1688
页数:23
相关论文
共 17 条
[1]  
[Anonymous], 1982, ZH VYCH MATEMAT MATE
[2]   Lie symmetries and multiple solutions in lambda-omega reaction-diffusion systems [J].
Archilla, JFR ;
Romero, JL ;
Romero, FR ;
Palmero, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (01) :185-194
[3]   Lie symmetries of nonlinear multidimensional reaction-diffusion systems: I [J].
Cherniha, R ;
King, JR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (02) :267-282
[4]   SYMMETRY REDUCTIONS AND EXACT-SOLUTIONS OF A CLASS OF NONLINEAR HEAT-EQUATIONS [J].
CLARKSON, PA ;
MANSFIELD, EL .
PHYSICA D-NONLINEAR PHENOMENA, 1994, 70 (03) :250-288
[5]  
DORODNITSYN VA, 1983, DIFF URAVN, V19, P1205
[6]  
Fushchich W I, 1990, DOKL AKAD NAUK UKR A, V7, P24
[7]   GALILEI-INVARIANT NONLINEAR-SYSTEMS OF EVOLUTION-EQUATIONS [J].
FUSHCHYCH, WI ;
CHERNIHA, RM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (19) :5569-5579
[8]   Higher symmetries and exact solutions of linear and nonlinear Schrodinger equation [J].
Fushchych, WI ;
Nikitin, AG .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (11) :5944-5959
[9]  
FUSHCHYCH WI, 1992, SYMMETRIES EXACT SOL
[10]  
FUSHCHYCH WI, 1987, J PHYS A, V27, pL929