Bimodules in crossed products of von Neumann algebras

被引:5
作者
Cameron, Jan [1 ]
Smith, Roger R. [2 ]
机构
[1] Vassar Coll, Dept Math, Poughkeepsie, NY 12604 USA
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
Von Neumann algebra; Crossed product; Bimodule; C-ASTERISK-SUBALGEBRAS; OPERATOR-ALGEBRAS; STAR-ALGEBRAS; AUTOMORPHISMS;
D O I
10.1016/j.aim.2014.12.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study bimodules over a von Neumann algebra M in the context of an inclusion M subset of M x(alpha), G, where G is a discrete group acting on a factor M by outer *-automorphisms. We characterize the M-bimodules X subset of M x(alpha) G that are closed in the Bures topology in terms of the subsets of G. We show that this characterization also holds for w*-closed bimodules when G has the approximation property (AP), a class of groups that includes all amenable and weakly amenable ones. As an application, we prove a version of Mercer's extension theorem for certain w*-continuous surjective isometric maps on X. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:539 / 561
页数:23
相关论文
共 26 条
[1]  
[Anonymous], 1978, LONDON MATH SOC LECT
[2]  
[Anonymous], 1990, Int. J. Math.
[3]   A construction of equivalence subrelations for intermediate subalgebras [J].
Aoi, H .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2003, 55 (03) :713-725
[4]  
ARVESON W, 1972, ACTA MATH-UPPSALA, V128, P271, DOI 10.1007/BF02392166
[5]  
Arveson W., 1969, Acta Math, V123, P141, DOI 10.1007/BF02392388
[6]  
BURES D, 1971, MEM AM MATH SOC, V110
[7]  
Cameron J, 2013, NEW YORK J MATH, V19, P455
[8]  
Choda H., 1978, Tohoku Math. J., V30, P491
[9]  
CHRISTENSEN E, 1995, P LOND MATH SOC, V71, P618
[10]   COMPLETELY BOUNDED MULTIPLIERS OF THE FOURIER ALGEBRA OF A SIMPLE LIE GROUP OF REAL RANK ONE [J].
COWLING, M ;
HAAGERUP, U .
INVENTIONES MATHEMATICAE, 1989, 96 (03) :507-549