Regularity and continuity of commutators of the Hardy-Littlewood maximal function

被引:24
作者
Liu, Feng [1 ]
Xue, Qingying [2 ]
Zhang, Pu [3 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[3] Mudanjiang Normal Univ, Dept Math, Mudanjiang 157011, Peoples R China
关键词
Besov space; commutator; Hardy-Littlewood maximal function; Sobolev space; Triebel-Lizorkin space; BOUNDEDNESS; OPERATORS; BMO;
D O I
10.1002/mana.201900013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be the Hardy-Littlewood maximal function and let [b, M] be its corresponding commutator. For 1 < p(1), p(2), p, q < infinity and 1/p = 1/p(1) + 1/p(2), we show that the commutator [b, M] is bounded and continuous from Sobolev space W-s,W-p1(R-d) to Sobolev space W-s,W-p (R-d) for 0 <= s <= 1 when b is an element of W-s,W-p2 (R-d), from Triebel-Lizorkin space F-s(p1,q) (R-d) to F-s(p,q) (R-d) if b is an element of F-s(p2,q) (R-d) and from Besov space B-s(p1,q) (R-d) to B-s(p,q) (R-d) if b is an element of B-s(p2,q) (R-d) and 0 < s < 1.
引用
收藏
页码:491 / 509
页数:19
相关论文
共 33 条
[1]   A note on maximal commutators and commutators of maximal functions [J].
Agcayazi, Mujdat ;
Gogatishvili, Amiran ;
Koca, Kerim ;
Mustafayev, Rza .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2015, 67 (02) :581-593
[2]   Functions of bounded variation, the derivative of the one dimensional maximal function, and applications to inequalities [J].
Aldaz, J. M. ;
Perez Lazaro, J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (05) :2443-2461
[3]  
[Anonymous], 1983, MONOGR MATH
[4]  
[Anonymous], 1998, Elliptic Partial Differential Equations of Second Order
[5]   Commutators for the maximal and sharp functions [J].
Bastero, J ;
Milman, M ;
Ruiz, FJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (11) :3329-3334
[6]   On the product of functions in BMO and H1 [J].
Bonami, Aline ;
Iwaniec, Tadeusz ;
Jones, Peter ;
Zinsmeister, Michel .
ANNALES DE L INSTITUT FOURIER, 2007, 57 (05) :1405-1439
[7]  
CARNEIRO E, 2013, J FUNCT ANAL, V265, P837, DOI DOI 10.1016/j.jfa.2013.05.012
[8]   On the regularity of maximal operators [J].
Carneiro, Emanuel ;
Moreira, Diego .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (12) :4395-4404
[9]   Endpoint Sobolev and BV continuity for maximal operators [J].
Carneiro, Emanuel } ;
Madrid, Jose ;
Pierce, Lillian B. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (10) :3262-3294
[10]   DERIVATIVE BOUNDS FOR FRACTIONAL MAXIMAL FUNCTIONS [J].
Carneiro, Emanuel ;
Madrid, Jose .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (06) :4063-4092