Review of battery electric vehicle propulsion systems incorporating flywheel energy storage

被引:23
作者
Dhand, A. [1 ]
Pullen, K. [1 ]
机构
[1] City Univ London, Sch Engn & Math Sci, London EC1V 0HB, England
关键词
Flywheel; Battery; Electric vehicle; Transmission; Motor-generator; DESIGN;
D O I
10.1007/s12239-015-0051-0
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The development of battery electric vehicles (BEV) must continue since this can lead us towards a zero emission transport system. There has been an advent of the production BEVs in recent years; however their low range and high cost still remain the two important drawbacks. The battery is the element which strongly affects the cost and range of the BEV. The batteries offer either high specific power or high specific energy but not both. To provide the BEVs with the characteristic to compete with conventional vehicles it is beneficial to hybridize the energy storage combining a high energy battery with a high power source. This shields the battery from peak currents and improves its capacity and life. There are various devices which could qualify as a secondary storage system for the BEV such as high power battery, supercapacitor and high speed flywheel (FW). This paper aims to review a specific type of hybridisation of energy storage which combines batteries and high speed flywheels. The flywheel has been used as a secondary energy system in BEVs from the early 1970s when the oil crises triggered an interest in BEVs. Since the last decade the interest in flywheels has strengthened and their application in the kinetic energy recovery system (KERS) in Formula 1 has further bolstered the case for flywheels. With a number of automotive manufacturers getting involved in developing flywheels for road applications, the authors believe commercial flywheel based powertrains are likely to be seen in the near future. It is hence timely to produce a review of research and development in the area of flywheel assisted BEVs.
引用
收藏
页码:487 / 500
页数:14
相关论文
共 50 条
  • [11] A Control Algorithm for Electric Vehicle Fast Charging Stations Equipped With Flywheel Energy Storage Systems
    Sun, Bo
    Dragicevic, Tomislav
    Freijedo, Francisco D.
    Vasquez, Juan C.
    Guerrero, Josep M.
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2016, 31 (09) : 6674 - 6685
  • [12] Control development and performance evaluation for battery/flywheel hybrid energy storage solutions to mitigate load fluctuations in all-electric ship propulsion systems
    Hou, Jun
    Sun, Jing
    Hofmann, Heath
    APPLIED ENERGY, 2018, 212 : 919 - 930
  • [13] Review of energy storage systems for electric vehicle applications: Issues and challenges
    Hannan, M. A.
    Hoque, M. M.
    Mohamed, A.
    Ayob, A.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 69 : 771 - 789
  • [14] Battery-Ultracapacitor Combination used as Energy Storage System in Electric Vehicle
    Rade, M. R.
    Dhamal, S. S.
    2015 INTERNATIONAL CONFERENCE ON EMERGING RESEARCH IN ELECTRONICS, COMPUTER SCIENCE AND TECHNOLOGY (ICERECT), 2015, : 230 - 234
  • [15] Hybrid Energy Storage Systems in Electric Vehicle
    Niu, Geng
    Arribas, Alejandro Pozo
    Salameh, Mohamad
    Krishnamurthy, Mahesh
    Garcia, Jose M.
    2015 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC), 2015,
  • [16] Energy management strategies in distribution system integrating electric vehicle and battery energy storage system: A review
    Vanlalchhuanawmi, C.
    Deb, Subhasish
    Onen, Ahmet
    Ustun, Taha Selim
    ENERGY STORAGE, 2024, 6 (05)
  • [17] On the Flywheel/Battery Hybrid Energy Storage System for DC Microgrid
    Hu, K. W.
    Liaw, C. M.
    2013 1ST INTERNATIONAL FUTURE ENERGY ELECTRONICS CONFERENCE (IFEEC 2013), 2013, : 119 - 125
  • [18] Energy management control strategies for energy storage systems of hybrid electric vehicle: A review
    Veerendra, Arigela Satya
    Bin Mohamed, Mohd Rusllim
    Marquez, Fausto Pedro Garcia
    ENERGY STORAGE, 2024, 6 (01)
  • [19] Review of battery-supercapacitor hybrid energy storage systems for electric vehicles
    Gopi, Chandu V․V. Muralee
    Ramesh, R.
    Results in Engineering, 2024, 24
  • [20] Optimal Sizing of the Energy Storage System (ESS) in a Battery-Electric Vehicle
    Ostadi, A.
    Kazerani, M.
    Chen, Shih-Ken
    2013 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC), 2013,