Prespecification of subgroup analyses and examination of treatment-subgroup interactions in cancer individual participant data meta-analyses are suboptimal

被引:6
作者
Gao, Ya [1 ]
Liu, Ming [1 ]
Shi, Shuzhen [1 ]
Niu, Mingming [2 ]
Li, Jiang [3 ]
Zhang, Junhua [4 ]
Song, Fujian [5 ]
Tian, Jinhui [1 ,6 ]
机构
[1] Lanzhou Univ, Sch Basic Med Sci, Evidence Based Med Ctr, Lanzhou, Peoples R China
[2] Lanzhou Univ, Sch Nursing, Evidence Based Nursing Ctr, Lanzhou, Peoples R China
[3] Chinese Acad Med Sci & Peking Union Med Coll, Natl Canc Ctr, Natl Clin Res Ctr Canc, Canc Hosp, Beijing, Peoples R China
[4] Tianjin Univ Tradit Chinese Med, Evidence Based Med Ctr, Tianjin, Peoples R China
[5] Univ East Anglia, Norwich Med Sch, Publ Hlth & Hlth Serv Res, Norwich, Norfolk, England
[6] Key Lab Evidence Based Med & Knowledge Translat G, Lanzhou, Peoples R China
关键词
Individual participant data meta-analysis; Neoplasm; Subgroup analysis; Treatment-subgroup interaction; Prespecification; Methodology; RANDOMIZED CONTROLLED-TRIALS; PATIENT DATA; SYSTEMATIC REVIEWS; OUTCOMES; LEVEL; HETEROGENEITY; REGRESSION; IPD;
D O I
10.1016/j.jclinepi.2021.06.019
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Objectives: This study aimed to explore the prespecification and conduct of subgroup analyses in cancer individual participant data meta-analyses (IPDMAs). Study Design and Setting: We searched PubMed, Embase.com, Cochrane Library, and Web of Science to identify IPDMAs of randomized controlled trials evaluating intervention effects for cancer. We evaluated how often cancer IPDMAs prespecify subgroup analyses and statistical approaches for examining treatment-subgroup interactions and handling continuous subgroup variables. Results: We included 89 IPDMAs, of which 41 (46.1%) reported a statistically significant treatment-subgroup interaction (P < 0.05) in at least one subgroup analysis. 47 (52.8%) IPDMAs prespecified methods for conducting subgroup analyses and the remaining 42 (47.2%) did not prespecify subgroup analyses. Of the 47 IPDMAs prespecified subgroup analyses, 19 performed the planned subgroup analyses, 21 added subgroup analyses, 7 reduced subgroup analyses. Eighty IPDMAs examined treatment-subgroup interactions, but 72 IPDMAs did not provide enough information to determine whether an appropriate approach that avoided aggregation bias was used. 85 IPDMAs that used continuous variables in subgroup analyses categorized continuous variables and only 1 IPDMA examined non-linear relationships. Conclusion: Many cancer IPDMAs did not prespecify subgroup analyses, nor did they fully perform planned subgroup analyses. Lack of details for the test of treatment-subgroup interactions and examination of non-linear interactions was suboptimal. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:156 / 167
页数:12
相关论文
共 50 条
[41]   Overlapping research efforts in a global pandemic: a rapid systematic review of COVID-19-related individual participant data meta-analyses [J].
Lauren Maxwell ;
Priya Shreedhar ;
Brooke Levis ;
Sayali Arvind Chavan ;
Shaila Akter ;
Mabel Carabali .
BMC Health Services Research, 23
[42]   An evaluation of homogeneity tests in meta-analyses in pain using simulations of individual patient data [J].
Gavaghan, DJ ;
Moore, RA ;
McQuay, HJ .
PAIN, 2000, 85 (03) :415-424
[43]   What works and for whom? Individual patient data meta-analyses in global nutrition research [J].
Sudfeld, Christopher R. ;
Smith, Emily R. .
AMERICAN JOURNAL OF CLINICAL NUTRITION, 2021, 114 :1S-2S
[44]   Chemotherapy in advanced ovarian cancer: four systematic meta-analyses of individual patient data from 39 randomized trials [J].
Aabo, K ;
Adams, M ;
Adnitt, P ;
Alberts, DS ;
Athanazziou, A ;
Barley, V ;
Bell, DR ;
Bianchi, U ;
Bolis, G ;
Brady, MF ;
Brodovsky, HS ;
Bruckner, H ;
Buyse, M ;
Canetta, R ;
Chylak, V ;
Cohen, CJ ;
Colombo, N ;
Conte, PF ;
Crowther, D ;
Edmonson, JH ;
Gennatas, C ;
Gilbey, E ;
Gore, M ;
Guthrie, D ;
Kaye, SB ;
Laing, AH ;
Landoni, F ;
Leonard, RC ;
Lewis, C ;
Liu, PY ;
Mangioni, C ;
Marsoni, S ;
Meerpohl, H ;
Omura, GA ;
Parmar, MKB ;
Pater, J ;
Pecorelli, S ;
Presti, M ;
Sauerbrei, W ;
Skarlos, DV ;
Smalley, RV ;
Solomon, HJ ;
Stewart, LA ;
Sturgeon, JFG ;
Tattersall, MHN ;
Wharton, JT ;
Huinink, WWT ;
Tomirotti, M ;
Torri, W ;
Trope, C .
BRITISH JOURNAL OF CANCER, 1998, 78 (11) :1479-1487
[45]   Effects and moderators of coping skills training on symptoms of depression and anxiety in patients with cancer: Aggregate data and individual patient data meta-analyses [J].
Buffart, L. M. ;
Schreurs, M. A. C. ;
Abrahams, H. J. G. ;
Kalter, J. ;
Aaronson, N. K. ;
Jacobsen, P. B. ;
Newton, R. U. ;
Courneya, K. S. ;
Armes, J. ;
Arving, C. ;
Braamse, A. M. ;
Brandberg, Y. ;
Dekker, J. ;
Ferguson, R. J. ;
Gielissen, M. F. ;
Glimelius, B. ;
Goedendorp, M. M. ;
Graves, K. D. ;
Heiney, S. P. ;
Horne, R. ;
Hunter, M. S. ;
Johansson, B. ;
Northouse, L. L. ;
Oldenburg, H. S. ;
Prins, J. B. ;
Savard, J. ;
van Beurden, M. ;
van den Berg, S. W. ;
Brug, J. ;
Knoop, H. ;
Verdonck-de Leeuw, I. M. .
CLINICAL PSYCHOLOGY REVIEW, 2020, 80
[46]   Depression screening tool accuracy individual participant data meta- analyses: data contribution was associated with multiple factors [J].
Wu, Yin ;
Sun, Ying ;
Liu, Yi ;
Levis, Brooke ;
Krishnan, Ankur ;
He, Chen ;
Neupane, Dipika ;
Patten, Scott B. ;
Cuijpers, Pim ;
Ziegelstein, Roy C. ;
Benedetti, Andrea ;
Thombs, Brett D. .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2023, 162 :63-71
[47]   Random effects survival models gave a better understanding of heterogeneity in individual patient data meta-analyses [J].
Michiels, S ;
Baujat, B ;
Mahé, C ;
Sargent, DJ ;
Pignon, JP .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2005, 58 (03) :238-245
[48]   Methods and characteristics of published network meta-analyses using individual patient data: protocol for a scoping review [J].
Veroniki, Areti Angeliki ;
Soobiah, Charlene ;
Tricco, Andrea C. ;
Elliott, Meghan J. ;
Straus, Sharon E. .
BMJ OPEN, 2015, 5 (04)
[49]   Reading, Conducting, and Developing Systematic Review and Individual Patient Data Meta-Analyses in Psychiatry for Treatment Issues (vol 12, 644980, 2021) [J].
Younes, Nadia ;
Claude, Laurie-Anne ;
Paoletti, Xavier .
FRONTIERS IN PSYCHIATRY, 2021, 12
[50]   Updating insights into rosiglitazone and cardiovascular risk through shared data: individual patient and summary level meta-analyses [J].
Wallach, Joshua D. ;
Wang, Kun ;
Zhang, Audrey D. ;
Cheng, Deanna ;
Nardini, Holly K. Grossetta ;
Lin, Haiqun ;
Bracken, Michael B. ;
Desai, Mayur ;
Krumholz, Harlan M. ;
Ross, Joseph S. .
BMJ-BRITISH MEDICAL JOURNAL, 2020, 368