Prespecification of subgroup analyses and examination of treatment-subgroup interactions in cancer individual participant data meta-analyses are suboptimal

被引:6
作者
Gao, Ya [1 ]
Liu, Ming [1 ]
Shi, Shuzhen [1 ]
Niu, Mingming [2 ]
Li, Jiang [3 ]
Zhang, Junhua [4 ]
Song, Fujian [5 ]
Tian, Jinhui [1 ,6 ]
机构
[1] Lanzhou Univ, Sch Basic Med Sci, Evidence Based Med Ctr, Lanzhou, Peoples R China
[2] Lanzhou Univ, Sch Nursing, Evidence Based Nursing Ctr, Lanzhou, Peoples R China
[3] Chinese Acad Med Sci & Peking Union Med Coll, Natl Canc Ctr, Natl Clin Res Ctr Canc, Canc Hosp, Beijing, Peoples R China
[4] Tianjin Univ Tradit Chinese Med, Evidence Based Med Ctr, Tianjin, Peoples R China
[5] Univ East Anglia, Norwich Med Sch, Publ Hlth & Hlth Serv Res, Norwich, Norfolk, England
[6] Key Lab Evidence Based Med & Knowledge Translat G, Lanzhou, Peoples R China
关键词
Individual participant data meta-analysis; Neoplasm; Subgroup analysis; Treatment-subgroup interaction; Prespecification; Methodology; RANDOMIZED CONTROLLED-TRIALS; PATIENT DATA; SYSTEMATIC REVIEWS; OUTCOMES; LEVEL; HETEROGENEITY; REGRESSION; IPD;
D O I
10.1016/j.jclinepi.2021.06.019
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Objectives: This study aimed to explore the prespecification and conduct of subgroup analyses in cancer individual participant data meta-analyses (IPDMAs). Study Design and Setting: We searched PubMed, Embase.com, Cochrane Library, and Web of Science to identify IPDMAs of randomized controlled trials evaluating intervention effects for cancer. We evaluated how often cancer IPDMAs prespecify subgroup analyses and statistical approaches for examining treatment-subgroup interactions and handling continuous subgroup variables. Results: We included 89 IPDMAs, of which 41 (46.1%) reported a statistically significant treatment-subgroup interaction (P < 0.05) in at least one subgroup analysis. 47 (52.8%) IPDMAs prespecified methods for conducting subgroup analyses and the remaining 42 (47.2%) did not prespecify subgroup analyses. Of the 47 IPDMAs prespecified subgroup analyses, 19 performed the planned subgroup analyses, 21 added subgroup analyses, 7 reduced subgroup analyses. Eighty IPDMAs examined treatment-subgroup interactions, but 72 IPDMAs did not provide enough information to determine whether an appropriate approach that avoided aggregation bias was used. 85 IPDMAs that used continuous variables in subgroup analyses categorized continuous variables and only 1 IPDMA examined non-linear relationships. Conclusion: Many cancer IPDMAs did not prespecify subgroup analyses, nor did they fully perform planned subgroup analyses. Lack of details for the test of treatment-subgroup interactions and examination of non-linear interactions was suboptimal. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:156 / 167
页数:12
相关论文
共 50 条
[21]   Feasibility of individual patient data meta-analyses in orthopaedic surgery [J].
Benoit Villain ;
Agnès Dechartres ;
Patrick Boyer ;
Philippe Ravaud .
BMC Medicine, 13
[22]   Feasibility of individual patient data meta-analyses in orthopaedic surgery [J].
Villain, Benoit ;
Dechartres, Agnes ;
Boyer, Patrick ;
Ravaud, Philippe .
BMC MEDICINE, 2015, 13
[23]   Individual participant dataeinformed risk of bias assessments for randomized controlled trials in systematic reviews and meta-analyses [J].
Sotiropoulos, James X. ;
Hunter, Kylie E. ;
Aagerup, Jannik ;
Williams, Jonathan G. ;
Libesman, Sol ;
Aberoumand, Mason ;
Barba, Angie ;
Wang, Rui ;
Love, Thomas D. ;
Johnson, Brittany J. ;
Seidler, Anna Lene .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2025, 185
[24]   Long-term outcomes of pediatric epilepsy surgery: Individual participant data and study level meta-analyses [J].
Harris, William B. ;
Brunette-Clement, Tristan ;
Wang, Andrew ;
Phillips, H. Westley ;
von Der Brelie, Christian ;
Weil, Alexander G. ;
Fallah, Aria .
SEIZURE-EUROPEAN JOURNAL OF EPILEPSY, 2022, 101 :227-236
[25]   Evidence of subgroup differences in meta-analyses evaluating medications for alcohol use disorder: An umbrella review [J].
Wallach, Joshua D. ;
Glick, Laura ;
Gueorguieva, Ralitza ;
O'Malley, Stephanie S. .
ALCOHOL-CLINICAL AND EXPERIMENTAL RESEARCH, 2024, 48 (01) :5-15
[26]   Environmental risk factors for non-Hodgkin's lymphoma: umbrella review and comparison of meta-analyses of summary and individual participant data [J].
Shi, Xiaoting ;
Zhuo, Haoran ;
Du, Yuxuan ;
Nyhan, Kate ;
Ioannidis, John ;
Wallach, Joshua D. .
BMJ MEDICINE, 2022, 1 (01)
[27]   Distribution and Epidemiological Characteristics of Published Individual Patient Data Meta-Analyses [J].
Huang, Yafang ;
Mao, Chen ;
Yuan, Jinqiu ;
Yang, Zuyao ;
Di, Mengyang ;
Tam, Wilson Wai-san ;
Tang, Jinling .
PLOS ONE, 2014, 9 (06)
[28]   Application of causal inference methods in individual-participant data meta-analyses in medicine: addressing data handling and reporting gaps with new proposed reporting guidelines [J].
Hufstedler, Heather ;
Mauer, Nicole ;
Yeboah, Edmund ;
Carr, Sinclair ;
Rahman, Sabahat ;
Danzer, Alexander M. ;
Debray, Thomas P. A. ;
de Jong, Valentijn M. T. ;
Campbell, Harlan ;
Gustafson, Paul ;
Maxwell, Lauren ;
Jaenisch, Thomas ;
Matthay, Ellicott C. ;
Baernighausen, Till .
BMC MEDICAL RESEARCH METHODOLOGY, 2024, 24 (01)
[29]   Risk of bias assessments in individual participant data meta-analyses of test accuracy and prediction models: a review shows improvements are needed [J].
Levis, Brooke ;
Snell, Kym I. E. ;
Damen, Johanna A. A. ;
Hattle, Miriam ;
Ensor, Joie ;
Dhiman, Paula ;
Navarro, Constanza L. Andaur ;
Takwoingi, Yemisi ;
Whiting, Penny F. ;
Debray, Thomas P. A. ;
Reitsma, Johannes B. ;
Moons, Karel G. M. ;
Collins, Gary S. ;
Riley, Richard D. .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2024, 165
[30]   A systematic review of analytical methods used to study subgroups in (individual patient data) meta-analyses [J].
Koopman, Laura ;
van der Heijden, Geert J. M. G. ;
Glasziou, Paul P. ;
Grobbee, Diederick E. ;
Rovers, Maroeska M. .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2007, 60 (10) :1002-1009