Existence of isoperimetric regions in non-compact Riemannian manifolds under Ricci or scalar curvature conditions

被引:0
|
作者
Mondino, Andrea [1 ]
Nardulli, Stefano [2 ]
机构
[1] ETH, Dept Math, Ramistr 101, CH-8092 Zurich, Switzerland
[2] Univ Fed Rio de Janeiro, Inst Matemat, Dept Matemat, Ctr Tecnol,Ilha Fundao, Ave Athos da Silveira Ramos 149, BR-21941909 Rio de Janeiro, RJ, Brazil
关键词
Isoperimetric problem; Ricci curvature; ALE gravitational instantons; asymptotically hyperbolic Einstein manifolds; PRESCRIBED CONFORMAL INFINITY; ROTATIONAL SYMMETRY; EINSTEIN-METRICS; SURFACES; INEQUALITIES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove existence of isoperimetric regions for every volume in non-compact Riemannian n-manifolds (M, g), n >= 2, having Ricci curvature Ric(g) >= (n - 1)k(0g) and being C-0-locally asymptotic to the simply connected space form of constant sectional curvature k(0) <= 0; moreover in case k(0) = 0 we show that the isoperimetric regions are indecomposable. Our results apply to a large class of physically and geometrically relevant examples: Eguchi-Hanson metric and more generally ALE gravitational instantons, asymptotically hyperbolic Einstein manifolds, Bryant type solitons, etc. Finally, under assumptions on the scalar curvature, we prove existence of isoperimetric regions of small volume.
引用
收藏
页码:115 / 138
页数:24
相关论文
共 15 条