Rigidity of hyperbolic sets on surfaces

被引:8
作者
Pinto, AA [1 ]
Rand, DA
机构
[1] Univ Porto, Fac Ciencias, P-4000 Oporto, Portugal
[2] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2005年 / 71卷
关键词
D O I
10.1112/S0024610704006052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a hyperbolic invariant set of a diffeomorphism on a surface, it is proved that, if the holonomies are sufficiently smooth, then the diffeomorphism on the hyperbolic invariant set is rigid in the sense that it is C1+ conjugate to a hyperbolic affine model.
引用
收藏
页码:481 / 502
页数:22
相关论文
共 24 条
[1]  
Arnol d V. I., 1961, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, V25, P21
[2]  
AVEZ A, 1968, TOPOLOGICAL DYNAMICS, P17
[3]  
Bowen R, 2008, LECT NOTES MATH, V470, P1, DOI 10.1007/978-3-540-77695-6
[4]  
FERREIRA FF, UNPUB NONEXISTENCE A
[5]   RIGIDITY OF SYMPLECTIC ANOSOV DIFFEOMORPHISMS ON LOW DIMENSIONAL TORI [J].
FLAMINIO, L ;
KATOK, A .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1991, 11 :427-440
[6]   ANOSOV DIFFEOMORPHISMS ON TORI [J].
FRANKS, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 145 :117-&
[7]  
Franks J., 1970, P S PURE MATH, VXIV, P61
[8]  
Ghys E., 1993, I HAUTES ETUDES SCI, V78, P163
[9]  
Herman M.-R., 1979, PUBL MATH I HAUTES E, V49, P5
[10]  
HURDER S, 1990, PUBL MATH-PARIS, V72, P5