Explicit expressions for meromorphic solutions of autonomous nonlinear ordinary differential equations

被引:46
作者
Demina, Maria V. [1 ]
Kudryashov, Nikolay A. [1 ]
机构
[1] Natl Res Nucl Univ MEPhI, Dept Appl Math, Moscow 115409, Russia
关键词
Autonomous nonlinear ordinary differential equations Meromorphic solutions; Periodic solutions; Elliptic solutions; GINZBURG-LANDAU EQUATION; TRAVELING-WAVE SOLUTIONS; EVOLUTION;
D O I
10.1016/j.cnsns.2010.06.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Meromorphic solutions of autonomous nonlinear ordinary differential equations are studied. An algorithm for constructing meromorphic solutions in explicit form is presented. General expressions for meromorphic solutions (including rational, periodic, elliptic) are found for a wide class of autonomous nonlinear ordinary differential equations. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1127 / 1134
页数:8
相关论文
共 20 条
[1]  
Eremenko A., 2006, J. Math. Phys. Anal. Geom., V2, P278
[2]   Non-existence of elliptic travelling wave solutions of the complex Ginzburg-Landau equation [J].
Hone, ANW .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 205 (1-4) :292-306
[3]   EXACT-SOLUTIONS OF THE GENERALIZED KURAMOTO-SIVASHINSKY EQUATION [J].
KUDRYASHOV, NA .
PHYSICS LETTERS A, 1990, 147 (5-6) :287-291
[4]   Exact solitary waves of the Fisher equation [J].
Kudryashov, NA .
PHYSICS LETTERS A, 2005, 342 (1-2) :99-106
[5]   Simplest equation method to look for exact solutions of nonlinear differential equations [J].
Kudryashov, NA .
CHAOS SOLITONS & FRACTALS, 2005, 24 (05) :1217-1231
[6]   PARTIAL-DIFFERENTIAL EQUATIONS WITH SOLUTIONS HAVING MOVABLE 1ST-ORDER SINGULARITIES [J].
KUDRYASHOV, NA .
PHYSICS LETTERS A, 1992, 169 (04) :237-242
[7]   ON TYPES OF NONLINEAR NONINTEGRABLE EQUATIONS WITH EXACT-SOLUTIONS [J].
KUDRYASHOV, NA .
PHYSICS LETTERS A, 1991, 155 (4-5) :269-275
[8]  
KUDRYASHOV NA, 1988, PMM-J APPL MATH MEC, V52, P360
[9]   Extended simplest equation method for nonlinear differential equations [J].
Kudryashov, Nikolai A. ;
Loguinova, Nadejda B. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 205 (01) :396-402
[10]   Polygons of differential equations for finding exact solutions [J].
Kudryashov, Nikolai A. ;
Demina, Maria V. .
CHAOS SOLITONS & FRACTALS, 2007, 33 (05) :1480-1496