A reliable probabilistic sleep stager based on a single EEG signal

被引:103
作者
Flexer, A
Gruber, G
Dorffner, G
机构
[1] Austrian Res Inst Artificial Intelligence, A-1010 Vienna, Austria
[2] Univ Calif San Diego, Inst Neural Computat, Swartz Ctr Computat Neurosci, La Jolla, CA 92093 USA
[3] Med Univ Vienna, Dept Med Cybernet & Artificial Intelligence, A-1010 Vienna, Austria
关键词
time series processing; sleep analysis; hidden Markov models; EEG;
D O I
10.1016/j.artmed.2004.04.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Objective: We developed a probabilistic continuous sleep stager based on Hidden Markov models using only a single EEG signal. It offers the advantage of being objective by not relying on human scorers, having much finer temporal resolution (1 s instead of 30 s), and being based on solid probabilistic principles rather than a predefined set of rules (Rechtschaffen & Kates) Methods and material: Sixty-eight whole night sleep recordings from two different sleep tabs are analysed using Gaussian observation Hidden Markov models. Results: Our unsupervised approach detects the cornerstones of human sleep (wakefulness, deep and rem sleep) with around 80% accuracy based on data from a single EEG channel. There are some difficulties in generalizing results across sleep tabs. Conclusion: Using data from a single electrode is sufficient for reliable continuous sleep staging. Sleep recordings from different sleep tabs are not directly comparable. Training of separate models for the steep tabs is necessary. (c) 2004 Published by Elsevier B.V.
引用
收藏
页码:199 / 207
页数:9
相关论文
共 18 条
  • [1] Ancoli-Israel S, 1999, SLEEP, V22, pS347
  • [2] Interrater reliability between scorers from eight European sleep laboratories in subjects with different sleep disorders
    Danker-Hopfe, H
    Kunz, D
    Gruber, G
    Klösch, G
    Lorenzo, JL
    Himanen, SL
    Kemp, B
    Penzel, T
    Röschke, J
    Dorn, H
    Schlögl, A
    Trenker, E
    Dorffner, G
    [J]. JOURNAL OF SLEEP RESEARCH, 2004, 13 (01) : 63 - 69
  • [3] Flexer A, 2002, LECT NOTES COMPUT SC, V2415, P1013
  • [4] Flexer A, 2002, NEURAL NETWORKS FOR SIGNAL PROCESSING XII, PROCEEDINGS, P687, DOI 10.1109/NNSP.2002.1030080
  • [5] An automatic, continuous and probabilistic sleep stager based on a hidden Markov model
    Flexer, A
    Dorffner, G
    Sykacek, P
    Rezek, I
    [J]. APPLIED ARTIFICIAL INTELLIGENCE, 2002, 16 (03) : 199 - 207
  • [6] GROEZINGER M, 2004, METHODS FIND EXP S D, V24, P33
  • [7] RELIABILITY OF RAPID CLINICAL STAGING OF ALL NIGHT SLEEP EEG
    KELLEY, JT
    REILLY, EL
    OVERALL, JE
    REED, K
    [J]. CLINICAL ELECTROENCEPHALOGRAPHY, 1985, 16 (01): : 16 - 20
  • [8] A PROPOSAL FOR COMPUTER-BASED SLEEP-WAKE ANALYSIS
    KEMP, B
    [J]. JOURNAL OF SLEEP RESEARCH, 1993, 2 (03) : 179 - 185
  • [9] The SIESTA project polygraphic and clinical database
    Klösch, G
    Kemp, B
    Penzel, T
    Schlögl, A
    Rappelsberger, P
    Trenker, E
    Gruber, G
    Zeitlhofer, J
    Saletu, B
    Herrmann, WM
    Himanen, SL
    Kunz, D
    Barbanoj, MJ
    Röschke, J
    Värri, A
    Dorffner, G
    [J]. IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 2001, 20 (03): : 51 - 57
  • [10] Sleep classification in infants by decision tree-based neural networks
    Koprinska, I
    Pfurtscheller, G
    Flotzinger, D
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 1996, 8 (04) : 387 - 401