MCbiclust: a novel algorithm to discover large-scale functionally related gene sets from massive transcriptomics data collections

被引:9
作者
Bentham, Robert B. [1 ,2 ]
Bryson, Kevin [3 ]
Szabadkai, Gyorgy [1 ,2 ,4 ]
机构
[1] UCL, Dept Cell & Dev Biol, Consortium Mitochondrial Res, London WC1E 6BT, England
[2] Francis Crick Inst, London NW1 1AT, England
[3] UCL, Dept Comp Sci, London WC1E 6BT, England
[4] Univ Padua, Dept Biomed Sci, I-35131 Padua, Italy
基金
英国惠康基金;
关键词
BICLUSTERING METHOD; EXPRESSION; CANCER; NETWORKS; REDOX;
D O I
10.1093/nar/gkx590
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The potential to understand fundamental biological processes from gene expression data has grown in parallel with the recent explosion of the size of data collections. However, to exploit this potential, novel analytical methods are required, capable of discovering large co-regulated gene networks. We found current methods limited in the size of correlated gene sets they could discover within biologically heterogeneous data collections, hampering the identification of multi-gene controlled fundamental cellular processes such as energy metabolism, organelle biogenesis and stress responses. Here we describe a novel biclustering algorithm called Massively Correlated Biclustering (MCbiclust) that selects samples and genes from large datasets with maximal correlated gene expression, allowing regulation of complex networks to be examined. The method has been evaluated using synthetic data and applied to large bacterial and cancer cell datasets. We show that the large biclusters discovered, so far elusive to identification by existing techniques, are biologically relevant and thus MCbiclust has great potential in the analysis of transcriptomics data to identify large-scale unknown effects hidden within the data. The identified massive biclusters can be used to develop improved transcriptomics based diagnosis tools for diseases caused by altered gene expression, or used for further network analysis to understand genotype-phenotype correlations.
引用
收藏
页码:8712 / 8730
页数:19
相关论文
共 66 条
[41]   Integrating biological knowledge based on functional annotations for biclustering of gene expression data [J].
Nepomuceno, Juan A. ;
Troncoso, Alicia ;
Nepomuceno-Chamorro, Isabel A. ;
Aguilar-Ruiz, Jesus S. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2015, 119 (03) :163-180
[42]   The MIntAct project-IntAct as a common curation platform for 11 molecular interaction databases [J].
Orchard, Sandra ;
Ammari, Mais ;
Aranda, Bruno ;
Breuza, Lionel ;
Briganti, Leonardo ;
Broackes-Carter, Fiona ;
Campbell, Nancy H. ;
Chavali, Gayatri ;
Chen, Carol ;
del-Toro, Noemi ;
Duesbury, Margaret ;
Dumousseau, Marine ;
Galeota, Eugenia ;
Hinz, Ursula ;
Iannuccelli, Marta ;
Jagannathan, Sruthi ;
Jimenez, Rafael ;
Khadake, Jyoti ;
Lagreid, Astrid ;
Licata, Luana ;
Lovering, Ruth C. ;
Meldal, Birgit ;
Melidoni, Anna N. ;
Milagros, Mila ;
Peluso, Daniele ;
Perfetto, Livia ;
Porras, Pablo ;
Raghunath, Arathi ;
Ricard-Blum, Sylvie ;
Roechert, Bernd ;
Stutz, Andre ;
Tognolli, Michael ;
van Roey, Kim ;
Cesareni, Gianni ;
Hermjakob, Henning .
NUCLEIC ACIDS RESEARCH, 2014, 42 (D1) :D358-D363
[43]   A mitochondrial protein compendium elucidates complex I disease biology [J].
Pagliarini, David J. ;
Calvo, Sarah E. ;
Chang, Betty ;
Sheth, Sunil A. ;
Vafai, Scott B. ;
Ong, Shao-En ;
Walford, Geoffrey A. ;
Sugiana, Canny ;
Boneh, Avihu ;
Chen, William K. ;
Hill, David E. ;
Vidal, Marc ;
Evans, James G. ;
Thorburn, David R. ;
Carr, Steven A. ;
Mootha, Vamsi K. .
CELL, 2008, 134 (01) :112-123
[44]   Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism [J].
Perera, RushikaM. ;
Stoykova, Svetlana ;
Nicolay, Brandon N. ;
Ross, Kenneth N. ;
Fitamant, Julien ;
Boukhali, Myriam ;
Lengrand, Justine ;
Deshpande, Vikram ;
Selig, Martin K. ;
Ferrone, Cristina R. ;
Settleman, Jeff ;
Stephanopoulos, Gregory ;
Dyson, Nicholas J. ;
Zoncu, Roberto ;
Ramaswamy, Sridhar ;
Haas, Wilhelm ;
Bardeesy, Nabeel .
NATURE, 2015, 524 (7565) :361-U251
[45]   Molecular portraits of human breast tumours [J].
Perou, CM ;
Sorlie, T ;
Eisen, MB ;
van de Rijn, M ;
Jeffrey, SS ;
Rees, CA ;
Pollack, JR ;
Ross, DT ;
Johnsen, H ;
Akslen, LA ;
Fluge, O ;
Pergamenschikov, A ;
Williams, C ;
Zhu, SX ;
Lonning, PE ;
Borresen-Dale, AL ;
Brown, PO ;
Botstein, D .
NATURE, 2000, 406 (6797) :747-752
[46]   Expression Atlas update-an integrated database of gene and protein expression in humans, animals and plants [J].
Petryszak, Robert ;
Keays, Maria ;
Tang, Y. Amy ;
Fonseca, Nuno A. ;
Barrera, Elisabet ;
Burdett, Tony ;
Fuellgrabe, Anja ;
Fuentes, Alfonso Munoz-Pomer ;
Jupp, Simon ;
Koskinen, Satu ;
Mannion, Oliver ;
Huerta, Laura ;
Megy, Karine ;
Snow, Catherine ;
Williams, Eleanor ;
Barzine, Mitra ;
Hastings, Emma ;
Weisser, Hendrik ;
Wright, James ;
Jaiswal, Pankaj ;
Huber, Wolfgang ;
Choudhary, Jyoti ;
Parkinson, Helen E. ;
Brazma, Alvis .
NUCLEIC ACIDS RESEARCH, 2016, 44 (D1) :D746-D752
[47]   Biclustering on expression data: A review [J].
Pontes, Beatriz ;
Giraldez, Raul ;
Aguilar-Ruiz, Jesus S. .
JOURNAL OF BIOMEDICAL INFORMATICS, 2015, 57 :163-180
[48]   A systematic comparison and evaluation of biclustering methods for gene expression data [J].
Prelic, A ;
Bleuler, S ;
Zimmermann, P ;
Wille, A ;
Bühlmann, P ;
Gruissem, W ;
Hennig, L ;
Thiele, L ;
Zitzler, E .
BIOINFORMATICS, 2006, 22 (09) :1122-1129
[49]   A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis [J].
Puigserver, P ;
Wu, ZD ;
Park, CW ;
Graves, R ;
Wright, M ;
Spiegelman, BM .
CELL, 1998, 92 (06) :829-839
[50]   Characterizing the interplay between multiple levels of organization within bacterial sigma factor regulatory networks [J].
Qiu, Yu ;
Nagarajan, Harish ;
Embree, Mallory ;
Shieu, Wendy ;
Abate, Elisa ;
Juarez, Katy ;
Cho, Byung-Kwan ;
Elkins, James G. ;
Nevin, Kelly P. ;
Barrett, Christian L. ;
Lovley, Derek R. ;
Palsson, Bernhard O. ;
Zengler, Karsten .
NATURE COMMUNICATIONS, 2013, 4