Radiomics prediction model for the improved diagnosis o clinically significant prostate cancer on biparametric MRI

被引:68
作者
Li, Mengjuan [1 ]
Chen, Tong [1 ]
Zhao, Wenlu [1 ]
Wei, Chaogang [1 ]
Li, Xiaobo [2 ]
Duan, Shaofeng [2 ]
Ji, Libiao [3 ]
Lu, Zhihua [3 ]
Shen, Junkang [1 ,4 ]
机构
[1] Soochow Univ, Dept Radiol, Affiliated Hosp 2, 1055 Sanxiang Rd, Suzhou 215000, Peoples R China
[2] GE Healthcare Life Sci, Shanghai 200000, Peoples R China
[3] Soochow Univ, Dept Radiol, Affiliated Changshu Hosp, Suzhou 215501, Peoples R China
[4] Soochow Univ, Inst Radiat Oncol Therapeut, Suzhou 215000, Peoples R China
关键词
Prostate cancer; radiomics; clinical risk factors; machine learning; classification; ESTRO-SIOG GUIDELINES; TEXTURAL ANALYSIS; NOMOGRAM; IMAGES; HELP; AGGRESSIVENESS; PERFORMANCE; STATISTICS; TRANSITION; FEATURES;
D O I
10.21037/qims.2019.12.06
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: To evaluate the potential of clinical-based model, a biparametric MRI-based radiomics model and a clinical-radiomics combined model for predicting clinically significant prostate cancer (PCa). Methods: In total, 381 patients with clinically suspicious PCa were included in this retrospective study; of those, 199 patients did not have PCa upon biopsy, while 182 patients had PCa. All patients underwent 3.0-T MRI examinations with the same acquisition parameters, and clinical risk factors associated with PCa (age, prostate volume, serum PSA, etc.) were collected. We randomly stratified the training and test sets using a 6:4 ratio. The radiomic features included gradient-based histogram features, grey-level co-occurrence matrix (GLCM), run-length matrix (RLM), and grey-level size zone matrix (GLSZM). Three models were developed using multivariate logistic regression analysis to predict clinically significant PCa: a clinical model, a radiomics model and a clinical-radiomics combined model. The diagnostic performance and clinical net benefit of each model were compared via receiver operating characteristic (ROC) curve analysis and decision curves, respectively. Results: Both the radiomics model (AUC: 0.98) and the clinical-radiomics combined model (AUC: 0.98) achieved greater predictive efficacy than the clinical model (AUC: 0.79). The decision curve analysis also showed that the radiomics model and combined model had higher net benefits than the clinical model. Conclusions: Compared with the evaluation of clinical risk factors associated with PCa only, the radiomics-based machine learning model can improve the predictive accuracy for clinically significant PCa, in terms of both diagnostic performance and clinical net benefit.
引用
收藏
页码:368 / +
页数:14
相关论文
共 39 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Radiomic Features on MRI Enable Risk Categorization of Prostate Cancer Patients on Active Surveillance: Preliminary Findings [J].
Algohary, Ahmad ;
Viswanath, Satish ;
Shiradkar, Rakesh ;
Ghose, Soumya ;
Pahwa, Shivani ;
Moses, Daniel ;
Jambor, Ivan ;
Shnier, Ronald ;
Bohm, Maret ;
Haynes, Anne-Maree ;
Brenner, Phillip ;
Delprado, Warick ;
Thompson, James ;
Pulbrock, Marley ;
Purysko, Andrei S. ;
Verma, Sadhna ;
Ponsky, Lee ;
Stricker, Phillip ;
Madabhushi, Anant .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 48 (03) :818-828
[3]   Overview of current multiparametric magnetic resonance imaging approach in the diagnosis and staging of prostate cancer [J].
Aydin, Hasan ;
Kizilgoz, Volkan ;
Tekin, Berna Okudan .
KAOHSIUNG JOURNAL OF MEDICAL SCIENCES, 2015, 31 (04) :167-178
[4]   Nomograms in oncology: more than meets the eye [J].
Balachandran, Vinod P. ;
Gonen, Mithat ;
Smith, J. Joshua ;
DeMatteo, Ronald P. .
LANCET ONCOLOGY, 2015, 16 (04) :E173-E180
[5]   Radiomic Machine Learning for Characterization of Prostate Lesions with MRI: Comparison to ADC Values [J].
Bonekamp, David ;
Kohl, Simon ;
Wiesenfarth, Manuel ;
Schelb, Patrick ;
Radtke, Jan Philipp ;
Goetz, Michael ;
Kickingereder, Philipp ;
Yaqubi, Kaneschka ;
Hitthaler, Bertram ;
Gaehlert, Nils ;
Kuder, Tristan Anselm ;
Deister, Fenja ;
Freitag, Martin ;
Hohenfellner, Markus ;
Hadaschik, Boris A. ;
Schlemmer, Heinz-Peter ;
Maier-Hein, Klaus H. .
RADIOLOGY, 2018, 289 (01) :128-137
[6]   A Four-kallikrein Panel Predicts High-grade Cancer on Biopsy: Independent Validation in a Community Cohort [J].
Braun, Katharina ;
Sjoberg, Daniel D. ;
Vickers, Andrew J. ;
Lilja, Hans ;
Bjartell, Anders S. .
EUROPEAN UROLOGY, 2016, 69 (03) :505-511
[7]   Predicting Gleason Score of Prostate Cancer Patients Using Radiomic Analysis [J].
Chaddad, Ahmad ;
Niazi, Tamim ;
Probst, Stephan ;
Bladou, Franck ;
Anidjar, Maurice ;
Bahoric, Boris .
FRONTIERS IN ONCOLOGY, 2018, 8
[8]   Multimodal Radiomic Features for the Predicting Gleason Score of Prostate Cancer [J].
Chaddad, Ahmad ;
Kucharczyk, Michael J. ;
Niazi, Tamim .
CANCERS, 2018, 10 (08)
[9]   Prostate Cancer Differentiation and Aggressiveness: Assessment With a Radiomic-Based Model vs. PI-RADS v2 [J].
Chen, Tong ;
Li, Mengjuan ;
Gu, Yuefan ;
Zhang, Yueyue ;
Yang, Shuo ;
Wei, Chaogang ;
Wu, Jiangfen ;
Li, Xin ;
Zhao, Wenlu ;
Shen, Junkang .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 49 (03) :875-884
[10]   Cancer Statistics in China, 2015 [J].
Chen, Wanqing ;
Zheng, Rongshou ;
Baade, Peter D. ;
Zhang, Siwei ;
Zeng, Hongmei ;
Bray, Freddie ;
Jemal, Ahmedin ;
Yu, Xue Qin ;
He, Jie .
CA-A CANCER JOURNAL FOR CLINICIANS, 2016, 66 (02) :115-132