Homogenization of the parabolic equation with periodic coefficients at the edge of a spectral gap

被引:3
作者
Akhmatova, A. R. [1 ]
Aksenova, E. S. [1 ]
Sloushch, V. A. [1 ]
Suslina, T. A. [1 ]
机构
[1] St Petersburg State Univ, St Petersburg, Russia
基金
俄罗斯科学基金会;
关键词
Periodic differential operators; spectral gap; parabolic equation; homogenization; operator error estimates; CAUCHY-PROBLEM; OPERATOR;
D O I
10.1080/17476933.2021.1947259
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In L-2(R), consider a second-order elliptic differential operator A(epsilon), epsilon > 0, of the form A(epsilon) = - d dx g(x/epsilon) d/dx + epsilon-2p(x/epsilon) with periodic coefficients. For small epsilon, we study the behavior of the semigroup e-Ae t, t> 0, cut by the spectral projection of the operator Ae for the interval [epsilon -2.,+8). Here e-2. is the right edge of a spectral gap for the operator A(epsilon). We obtain approximation for the `cut semigroup' in the operator norm in L2( R) with error O(epsilon), and also a more accurate approximation with error O(epsilon 2) (after singling out the factor e-t./epsilon(2)). The results are applied to homogenization of the Cauchy problem.tve = -A(epsilon)ve, ve | t=0 = f(epsilon), with the initial data fe from a special class.
引用
收藏
页码:523 / 555
页数:33
相关论文
共 27 条
[1]  
[Anonymous], 1977, Adv. Math. Sci., V32, P17
[2]  
[Anonymous], 2006, J. Math. Sci.
[3]  
[Anonymous], 2009, PROBLEMY MAT ANALIZA
[4]  
[Anonymous], 2003, Algebra i Analiz
[5]  
[Anonymous], 1980, Lecture Note in Phys.
[6]  
BAKHVALOV N. S., 1989, MATH ITS APPL SOVIET, V36
[7]  
Bensoussan A., 1978, Asymptotic analysis for periodic structures
[8]  
Birman M, 2001, OPER THEOR, V129, P71
[9]  
Birman M., 2004, St. Petersburg Mathematical Journal, V15, P639, DOI 10.1090/S1061-0022-04-00827-1
[10]  
[Бирман М.Ш. Birman M. Sh.], 2005, [Алгебра и анализ, Algebra i analiz], V17, P1