Artificial Intelligence for Cell Segmentation, Event Detection, and Tracking for Label-Free Microscopy Imaging

被引:11
作者
Maddalena, Lucia [1 ]
Antonelli, Laura [1 ]
Albu, Alexandra [2 ]
Hada, Aroj [2 ]
Guarracino, Mario Rosario [1 ,2 ]
机构
[1] CNR, Inst High Performance Comp & Networking, I-80131 Naples, Italy
[2] Univ Cassino & Southern Lazio, Dept Econ & Law, I-03043 Cassino, Italy
关键词
label-free microscopy; cell segmentation; cell classification; cell event detection; cell tracking; artificial intelligence; machine learning; deep learning; MITOSIS DETECTION; POLYCOMB-GROUP; PHASE; PLATFORM; PROTEINS; NETWORK; TOOLS;
D O I
10.3390/a15090313
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Background: Time-lapse microscopy imaging is a key approach for an increasing number of biological and biomedical studies to observe the dynamic behavior of cells over time which helps quantify important data, such as the number of cells and their sizes, shapes, and dynamic interactions across time. Label-free imaging is an essential strategy for such studies as it ensures that native cell behavior remains uninfluenced by the recording process. Computer vision and machine/deep learning approaches have made significant progress in this area. Methods: In this review, we present an overview of methods, software, data, and evaluation metrics for the automatic analysis of label-free microscopy imaging. We aim to provide the interested reader with a unique source of information, with links for further detailed information. Results: We review the most recent methods for cell segmentation, event detection, and tracking. Moreover, we provide lists of publicly available software and datasets. Finally, we summarize the metrics most frequently adopted for evaluating the methods under exam. Conclusions: We provide hints on open challenges and future research directions.
引用
收藏
页数:22
相关论文
共 101 条
  • [1] Abdulla W., 2017, MASK R CNN OBJECT DE
  • [2] Allan D.B., 2018, ZENODO, DOI [10.5281/zenodo, DOI 10.5281/ZENODO]
  • [3] CTMC: Cell Tracking with Mitosis Detection Dataset Challenge
    Anjum, Samreen
    Gurari, Danna
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 4228 - 4237
  • [4] [Anonymous], 2015, P MATH MODELS BIOL B, DOI DOI 10.1007/978-3-319-23497-7_2
  • [5] Antonelli L., 2022, ANNALI DELLUNIVERSIT
  • [6] Integrating imaging and omics data: A review
    Antonelli, Laura
    Guarracino, Mario Rosario
    Maddalena, Lucia
    Sangiovanni, Mara
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2019, 52 : 264 - 280
  • [7] LIM Tracker: a software package for cell tracking and analysis with advanced interactivity
    Aragaki, Hideya
    Ogoh, Katsunori
    Kondo, Yohei
    Aoki, Kazuhiro
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [8] Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification
    Arganda-Carreras, Ignacio
    Kaynig, Verena
    Rueden, Curtis
    Eliceiri, Kevin W.
    Schindelin, Johannes
    Cardona, Albert
    Seung, H. Sebastian
    [J]. BIOINFORMATICS, 2017, 33 (15) : 2424 - 2426
  • [9] Arteta C, 2012, LECT NOTES COMPUT SC, V7510, P348, DOI 10.1007/978-3-642-33415-3_43
  • [10] ilastik: interactive machine learning for (bio) image analysis
    Berg, Stuart
    Kutra, Dominik
    Kroeger, Thorben
    Straehle, Christoph N.
    Kausler, Bernhard X.
    Haubold, Carsten
    Schiegg, Martin
    Ales, Janez
    Beier, Thorsten
    Rudy, Markus
    Eren, Kemal
    Cervantes, Jaime I.
    Xu, Buote
    Beuttenmueller, Fynn
    Wolny, Adrian
    Zhang, Chong
    Koethe, Ullrich
    Hamprecht, Fred A.
    Kreshuk, Anna
    [J]. NATURE METHODS, 2019, 16 (12) : 1226 - 1232