GLOBAL STABILITY OF SPATIALLY NONHOMOGENEOUS STEADY STATE SOLUTION IN A DIFFUSIVE HOLLING-TANNER PREDATOR-PREY MODEL

被引:13
作者
Ni, Wenjie [1 ]
Shi, Junping [2 ]
Wang, Mingxin [3 ]
机构
[1] Univ New England, Sch Sci & Technol, Armidale, NSW 2351, Australia
[2] William & Mary, Dept Math, Williamsburg, VA 23187 USA
[3] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
关键词
Diffusive predator-prey model; heterogeneous environment; global stability; Lyapunov function; HOPF-BIFURCATION; SYSTEMS; PERMANENCE; DYNAMICS;
D O I
10.1090/proc/15370
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The global stability of the nonhomogeneous positive steady state solution to a diffusive Holling-Tanner predator-prey model in a heterogeneous environment is proved by using a newly constructed Lyapunov function and estimates of nonconstant steady state solutions. The techniques developed here can be adapted for other spatially heterogeneous consumer-resource models.
引用
收藏
页码:3781 / 3794
页数:14
相关论文
共 26 条
[1]   PERMANENCE IN ECOLOGICAL-SYSTEMS WITH SPATIAL HETEROGENEITY [J].
CANTRELL, RS ;
COSNER, C ;
HUTSON, V .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1993, 123 :533-559
[2]   GLOBAL STABILITY AND HOPF BIFURCATION IN A DELAYED DIFFUSIVE LESLIE-GOWER PREDATOR-PREY SYSTEM [J].
Chen, Shanshan ;
Shi, Junping ;
Wei, Junjie .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (03)
[3]   Global stability in a diffusive Holling-Tanner predator-prey model [J].
Chen, Shanshan ;
Shi, Junping .
APPLIED MATHEMATICS LETTERS, 2012, 25 (03) :614-618
[4]   A diffusive predator-prey model in heterogeneous environment [J].
Du, YH ;
Hsu, SB .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 203 (02) :331-364
[5]   Allee effect and bistability in a spatially heterogeneous predator-prey model [J].
Du, Yihong ;
Shi, Junping .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (09) :4557-4593
[6]   Effect of a protection zone in the diffusive Leslie predator-prey model [J].
Du, Yihong ;
Peng, Rui ;
Wang, Mingxin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (10) :3932-3956
[7]   PERSISTENCE IN INFINITE-DIMENSIONAL SYSTEMS [J].
HALE, JK ;
WALTMAN, P .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (02) :388-395
[8]   GLOBAL STABILITY FOR A CLASS OF PREDATOR-PREY SYSTEMS [J].
HSU, SB ;
HUANG, TW .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (03) :763-783
[9]  
Hsu Sze-Bi, 1996, CANAD APPL MATH Q, V6, P91
[10]   PERMANENCE AND THE DYNAMICS OF BIOLOGICAL-SYSTEMS [J].
HUTSON, V ;
SCHMITT, K .
MATHEMATICAL BIOSCIENCES, 1992, 111 (01) :1-71