Non-pharmaceutical intervention to reduce COVID-19 impact in Argentina

被引:2
作者
Garcia-Violini, Demian [1 ]
Sanchez-Pena, Ricardo [2 ,4 ]
Moscoso-Vasquez, Marcela [2 ,4 ]
Garelli, Fabricio [3 ,4 ]
机构
[1] Univ Nacl Quilmes, Dept Ciencia & Tecnol, Roque Saenz Pena 352, RA-1876 Buenos Aires, Argentina
[2] Inst Tecnol Buenos Aires, Ctr Sistemas & Control, Ave Eduardo Madero 399,, RA-1106 CABA, Argentina
[3] Univ Nacl La Plata, Grp Control Applicat, LEICI, CC 91 Plata,Calle 48 & 116, RA-1900 Buenos Aires, Argentina
[4] Consejo Nacl Invest Cient & Tecn, Buenos Aires, Argentina
关键词
COVID-19; Pandemic; Lockdown; Automatic control; LPV; Model;
D O I
10.1016/j.isatra.2021.06.024
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work is focused on the multilevel control of the population confinement in the city of Buenos Aires and its surroundings due to the pandemic generated by the COVID-19 outbreak. The model used here is known as SEIRD and two objectives are sought: a time-varying identification of the infection rate and the inclusion of a controller. A control differential equation has been added to regulate the transitions between confinement and normal life, according to five different levels. The plasma treatment from recovered patients has also been considered in the control algorithm. Using the proposed strategy the ICU occupancy is reduced, and as a consequence, the number of deaths is also decreased. (c) 2021 ISA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:225 / 235
页数:11
相关论文
共 26 条
[1]   ROBUST PERFORMANCE OF LINEAR PARAMETRICALLY VARYING SYSTEMS USING PARAMETRICALLY-DEPENDENT LINEAR FEEDBACK [J].
BECKER, G ;
PACKARD, A .
SYSTEMS & CONTROL LETTERS, 1994, 23 (03) :205-215
[2]  
Benitez Joaquín, 2018, Cuad. urbano, V25, P31, DOI 10.30972/crn.25253510
[3]  
Daley DJ., 2001, Epidemic Modelling: An Introduction
[4]  
Djidjou-Demasse R, 2020, medRxiv
[5]   Effectiveness of convalescent plasma therapy in severe COVID-19 patients [J].
Duan, Kai ;
Liu, Bende ;
Li, Cesheng ;
Zhang, Huajun ;
Yu, Ting ;
Qu, Jieming ;
Zhou, Min ;
Chen, Li ;
Meng, Shengli ;
Hu, Yong ;
Peng, Cheng ;
Yuan, Mingchao ;
Huang, Jinyan ;
Wang, Zejun ;
Yu, Jianhong ;
Gao, Xiaoxiao ;
Wang, Dan ;
Yu, Xiaoqi ;
Li, Li ;
Zhang, Jiayou ;
Wu, Xiao ;
Li, Bei ;
Xu, Yanping ;
Chen, Wei ;
Peng, Yan ;
Hu, Yeqin ;
Lin, Lianzhen ;
Liu, Xuefei ;
Huang, Shihe ;
Zhou, Zhijun ;
Zhang, Lianghao ;
Wang, Yue ;
Zhang, Zhi ;
Deng, Kun ;
Xia, Zhiwu ;
Gong, Qin ;
Zhang, Wei ;
Zheng, Xiaobei ;
Liu, Ying ;
Yang, Huichuan ;
Zhou, Dongbo ;
Yu, Ding ;
Hou, Jifeng ;
Shi, Zhengli ;
Chen, Saijuan ;
Chen, Zhu ;
Zhang, Xinxin ;
Yang, Xiaoming .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (17) :9490-9496
[6]  
Gamarnik A., 2020, COMMUNICATION JUL
[7]  
Google, 2020, COVID-19 Community Mobility Report. Ile-de-France September 10, 2021-Mobility changes
[8]  
groupcpc-19, 2020, CONVALESCENT PLASMA
[9]  
Grupo Correo, 2020, HOY EXTREMADURA NEWS
[10]   A discrete stochastic model of the COVID-19 outbreak: Forecast and control [J].
He, Sha ;
Tang, Sanyi ;
Rong, Libin .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (04) :2792-2804