A robust incomplete factorization preconditioner for positive definite matrices

被引:75
|
作者
Benzi, M
Tuma, M
机构
[1] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
[2] Acad Sci Czech Republ, Inst Comp Sci, Prague 18207 8, Czech Republic
关键词
sparse linear systems; positive definite matrices; preconditioned conjugate gradients; incomplete factorization; A-orthogonalization; SAINV;
D O I
10.1002/nla.320
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe a novel technique for computing a sparse incomplete factorization of a general symmetric positive definite matrix A. The factorization is not based on the Cholesky algorithm (or Gaussian elimination), but on A-orthogonalization. Thus, the incomplete factorization always exists and can be computed without any diagonal modification. When used in conjunction with the conjugate gradient algorithin, the new preconditioner results in a reliable solver for highly ill-conditioned linear systems. Comparisons with other incomplete factorization techniques using challenging linear systems from structural analysis and solid mechanics problems are presented. Copyright (C) 2003 John Wiley Sons, Ltd.
引用
收藏
页码:385 / 400
页数:16
相关论文
共 50 条
  • [41] Geometric Distance Between Positive Definite Matrices of Different Dimensions
    Lim, Lek-Heng
    Sepulchre, Rodolphe
    Ye, Ke
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (09) : 5401 - 5405
  • [42] Jordan triple endomorphisms and isometries of spaces of positive definite matrices
    Molnar, Lajos
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (01) : 12 - 33
  • [43] Maps on positive definite matrices preserving Bregman and Jensen divergences
    Molnar, Lajos
    Pitrik, Jozsef
    Virosztek, Daniel
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 495 : 174 - 189
  • [44] Nesbitt and Shapiro cyclic sum inequalities for positive definite matrices
    Choudhury, Projesh Nath
    Sivakumar, K. C.
    ADVANCES IN OPERATOR THEORY, 2022, 7 (01)
  • [45] Nesbitt and Shapiro cyclic sum inequalities for positive definite matrices
    Projesh Nath Choudhury
    K. C. Sivakumar
    Advances in Operator Theory, 2022, 7
  • [46] Learning Log-Determinant Divergences for Positive Definite Matrices
    Cherian, Anoop
    Stanitsas, Panagiotis
    Wang, Jue
    Harandi, Mehrtash T.
    Morellas, Vassilios
    Papanikolopoulos, Nikos
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 5088 - 5102
  • [47] Structure of Hiai-Petz parametrized geometry for positive definite matrices
    Fujii, Jun Ichi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (01) : 318 - 326
  • [48] Elliptic isometries of the manifold of positive definite real matrices with the trace metric
    Alberto Dolcetti
    Donato Pertici
    Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 575 - 592
  • [49] Diagonal and off-diagonal blocks of positive definite partitioned matrices
    Bourin, Jean-Christophe
    Lee, Eun-Young
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 684 : 87 - 100
  • [50] An incomplete LU preconditioner for problems in acoustics
    Gander, MJ
    Nataf, F
    JOURNAL OF COMPUTATIONAL ACOUSTICS, 2005, 13 (03) : 455 - 476