A robust incomplete factorization preconditioner for positive definite matrices

被引:75
|
作者
Benzi, M
Tuma, M
机构
[1] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
[2] Acad Sci Czech Republ, Inst Comp Sci, Prague 18207 8, Czech Republic
关键词
sparse linear systems; positive definite matrices; preconditioned conjugate gradients; incomplete factorization; A-orthogonalization; SAINV;
D O I
10.1002/nla.320
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe a novel technique for computing a sparse incomplete factorization of a general symmetric positive definite matrix A. The factorization is not based on the Cholesky algorithm (or Gaussian elimination), but on A-orthogonalization. Thus, the incomplete factorization always exists and can be computed without any diagonal modification. When used in conjunction with the conjugate gradient algorithin, the new preconditioner results in a reliable solver for highly ill-conditioned linear systems. Comparisons with other incomplete factorization techniques using challenging linear systems from structural analysis and solid mechanics problems are presented. Copyright (C) 2003 John Wiley Sons, Ltd.
引用
收藏
页码:385 / 400
页数:16
相关论文
共 50 条
  • [31] WASSERSTEIN BARYCENTERS IN THE MANIFOLD OF ALL POSITIVE DEFINITE MATRICES
    Nobari, Elham
    Kakavandi, Bijan Ahmadi
    QUARTERLY OF APPLIED MATHEMATICS, 2019, 77 (03) : 655 - 669
  • [32] Relaxed alternating methods for Hermitian positive definite matrices
    Cheng, Guang-Hui
    Huang, Ting-Zhu
    RECENT PROGRESS IN COMPUTATIONAL SCIENCES AND ENGINEERING, VOLS 7A AND 7B, 2006, 7A-B : 87 - 90
  • [33] ON POSITIVE SEMIDEFINITE MODIFICATION SCHEMES FOR INCOMPLETE CHOLESKY FACTORIZATION
    Scott, Jennifer
    Tuma, Miroslav
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (02) : A609 - A633
  • [34] A BLOCK FSAI-ILU PARALLEL PRECONDITIONER FOR SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEMS
    Janna, Carlo
    Ferronato, Massimilano
    Gambolati, Giuseppe
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (05) : 2468 - 2484
  • [35] Incomplete column-row factorization method for general sparse matrices
    Saukh, Sergii
    PRZEGLAD ELEKTROTECHNICZNY, 2010, 86 (01): : 127 - 129
  • [36] Threshold incomplete factorization constraint preconditioners for saddle-point matrices
    Lungten, Sangye
    Schilders, Wil H. A.
    Maubach, Joseph M. L.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 545 : 76 - 107
  • [37] Transformations on positive definite matrices preserving generalized distance measures
    Molnar, Lajos
    Szokol, Patricia
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 466 : 141 - 159
  • [38] Scaling symmetric positive definite matrices to prescribed row sums
    O'Leary, DP
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 370 : 185 - 191
  • [39] DISCRETE REGRESSION METHODS ON THE CONE OF POSITIVE-DEFINITE MATRICES
    Boumal, Nicolas
    Absil, P-A.
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 4232 - 4235
  • [40] On the Bures-Wasserstein distance between positive definite matrices
    Bhatia, Rajendra
    Jain, Tanvi
    Lim, Yongdo
    EXPOSITIONES MATHEMATICAE, 2019, 37 (02) : 165 - 191