Combining evidence from Mendelian randomization and colocalization: Review and comparison of approaches

被引:203
作者
Zuber, Verena [1 ,2 ,3 ]
Grinberg, Nastasiya F. [4 ]
Gill, Dipender [1 ,5 ,6 ,7 ,8 ]
Manipur, Ichcha [9 ,10 ]
Slob, Eric A. W. [11 ]
Patel, Ashish [11 ]
Wallace, Chris [9 ,10 ,11 ]
Burgess, Stephen [11 ,12 ]
机构
[1] Imperial Coll London, Sch Publ Hlth, Dept Epidemiol & Biostat, London, England
[2] Imperial Coll London, Sch Publ Hlth, MRC Ctr Environm & Hlth, London, England
[3] Imperial Coll London, UK Dementia Res Inst, Imperial Coll, London, England
[4] Natl Inst Agr Bot, Cambridge, England
[5] Univ London, Inst Med & Biomed Educ, Clin Pharmacol & Therapeut Sect, London, England
[6] Univ London, Inst Infect & Immun, London, England
[7] St Georges Univ Hosp NHS Fdn Trust, Clin Pharmacol Grp, Pharm & Med Directorate, London, England
[8] Novo Nordisk Res Ctr Oxford, Dept Genet, Oxford, England
[9] Univ Cambridge, Cambridge Inst Therapeut Immunol & Infect Dis, Cambridge, England
[10] Univ Cambridge, Sch Clin Med, Dept Med, Cambridge, England
[11] Univ Cambridge, MRC Biostat Unit, Cambridge, England
[12] Univ Cambridge, Dept Publ Hlth & Primary Care, Cardiovasc Epidemiol Unit, Cambridge, England
基金
英国惠康基金; 英国医学研究理事会;
关键词
GENOME-WIDE ASSOCIATION; GENETIC RISK VARIANTS; STATISTICAL COLOCALIZATION; INSTRUMENTAL VARIABLES; CAUSAL INFERENCE; GWAS; EXPRESSION; METAANALYSIS; CHALLENGES; MEDIATION;
D O I
10.1016/j.ajhg.2022.04.001
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Mendelian randomization and colocalization are two statistical approaches that can be applied to summarized data from genome-wide association studies (GWASs) to understand relationships between traits and diseases. However, despite similarities in scope, they are different in their objectives, implementation, and interpretation, in part because they were developed to serve different scientific communities. Mendelian randomization assesses whether genetic predictors of an exposure are associated with the outcome and interprets an association as evidence that the exposure has a causal effect on the outcome, whereas colocalization assesses whether two traits are affected by the same or distinct causal variants. When considering genetic variants in a single genetic region, both approaches can be performed. While a positive colocalization finding typically implies a non-zero Mendelian randomization estimate, the reverse is not generally true: there are several scenarios which would lead to a non-zero Mendelian randomization estimate but lack evidence for colocalization. These include the existence of distinct but correlated causal variants for the exposure and outcome, which would violate the Mendelian randomization assumptions, and a lack of strong associations with the outcome. As colocalization was developed in the GWAS tradition, typically evidence for colocalization is concluded only when there is strong evidence for associations with both traits. In contrast, a non-zero estimate from Mendelian randomization can be obtained despite only nominally significant genetic associations with the outcome at the locus. In this review, we discuss how the two approaches can provide complementary information on potential therapeutic targets.
引用
收藏
页码:767 / 782
页数:16
相关论文
共 96 条
  • [1] Genetic Determinants of Lipids and Cardiovascular Disease Outcomes A Wide-Angled Mendelian Randomization Investigation
    Allara, Elias
    Morani, Gabriele
    Carter, Paul
    Gkatzionis, Apostolos
    Zuber, Verena
    Foley, Christopher N.
    Rees, Jessica M. B.
    Mason, Amy M.
    Bell, Steven
    Gill, Dipender
    Lindstrom, Sara
    Butterworth, Adam S.
    Di Angelantonio, Emanuele
    Peters, James
    Burgess, Stephen
    [J]. CIRCULATION-GENOMIC AND PRECISION MEDICINE, 2019, 12 (12): : 543 - 551
  • [2] Redefining tissue specificity of genetic regulation of gene expression in the presence of allelic heterogeneity
    Arvanitis, Marios
    Tayeb, Karl
    Strober, Benjamin J.
    Battle, Alexis
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2022, 109 (02) : 223 - 239
  • [3] Stochastic search and joint fine-mapping increases accuracy and identifies previously unreported associations in immune-mediated diseases
    Asimit, Jennifer L.
    Rainbow, Daniel B.
    Fortune, Mary D.
    Grinberg, Nastasiya F.
    Wicker, Linda S.
    Wallace, Chris
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [4] The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease
    Astle, William J.
    Elding, Heather
    Jiang, Tao
    Allen, Dave
    Ruklisa, Dace
    Mann, Alice L.
    Mead, Daniel
    Bouman, Heleen
    Riveros-Mckay, Fernando
    Kostadima, Myrto A.
    Lambourne, John J.
    Sivapalaratnam, Suthesh
    Downes, Kate
    Kundu, Kousik
    Bomba, Lorenzo
    Berentsen, Kim
    Bradley, John R.
    Daugherty, Louise C.
    Delaneau, Olivier
    Freson, Kathleen
    Garner, Stephen F.
    Grassi, Luigi
    Guerrero, Jose
    Haimel, Matthias
    Janssen-Megens, Eva M.
    Kaan, Anita
    Kamat, Mihir
    Kim, Bowon
    Mandoli, Amit
    Marchini, Jonathan
    Martens, Joost H. A.
    Meacham, Stuart
    Megy, Karyn
    O'Connell, Jared
    Petersen, Romina
    Sharifi, Nilofar
    Sheard, Simon M.
    Staley, James R.
    Tuna, Salih
    van der Ent, Martijn
    Walter, Klaudia
    Wang, Shuang-Yin
    Wheeler, Eleanor
    Wilder, Steven P.
    Iotchkova, Valentina
    Moore, Carmel
    Sambrook, Jennifer
    Stunnenberg, Hendrik G.
    Di Angelantonio, Emanuele
    Kaptoge, Stephen
    [J]. CELL, 2016, 167 (05) : 1415 - +
  • [5] Identifying drug targets for neurological and psychiatric disease via genetics and the brain transcriptome
    Baird, Denis A.
    Liu, Jimmy Z.
    Zheng, Jie
    Sieberts, Solveig K.
    Perumal, Thanneer
    Elsworth, Benjamin
    Richardson, Tom G.
    Chen, Chia-Yen
    Carrasquillo, Minerva M.
    Allen, Mariet
    Reddy, Joseph S.
    De Jager, Philip L.
    Ertekin-Taner, Nilufer
    Mangravite, Lara M.
    Logsdon, Ben
    Estrada, Karol
    Haycock, Philip C.
    Hemani, Gibran
    Runz, Heiko
    Smith, George Davey
    Gaunt, Tom R.
    [J]. PLOS GENETICS, 2021, 17 (01):
  • [6] Batool F., 2021, PREPRINT, DOI DOI 10.48550/ARXIV.2109.12361
  • [7] Low LDL cholesterol, PCSK9 and HMGCR genetic variation, and risk of Alzheimer's disease and Parkinson's disease: Mendelian randomisation study
    Benn, Marianne
    Nordestgaard, Borge G.
    Frikke-Schmidt, Ruth
    Tybjrg-Hansen, Anne
    [J]. BMJ-BRITISH MEDICAL JOURNAL, 2017, 357 : j1648
  • [8] Prospects of Fine-Mapping Trait-Associated Genomic Regions by Using Summary Statistics from Genome-wide Association Studies
    Benner, Christian
    Havulinna, Aki S.
    Jarvelin, Marjo-Riitta
    Salomaa, Veikko
    Ripatti, Samuli
    Pirinen, Matti
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2017, 101 (04) : 539 - 551
  • [9] Mendelian randomization studies: a review of the approaches used and the quality of reporting
    Boef, Anna G. C.
    Dekkers, Olaf M.
    le Cessie, Saskia
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2015, 44 (02) : 496 - 511
  • [10] Circulating inflammatory cytokines and risk of five cancers: a Mendelian randomization analysis
    Bouras, Emmanouil
    Karhunen, Ville
    Gill, Dipender
    Huang, Jian
    Haycock, Philip C.
    Gunter, Marc J.
    Johansson, Mattias
    Brennan, Paul
    Key, Tim
    Lewis, Sarah J.
    Martin, Richard M.
    Murphy, Neil
    Platz, Elizabeth A.
    Travis, Ruth
    Yarmolinsky, James
    Zuber, Verena
    Martin, Paul
    Katsoulis, Michail
    Freisling, Heinz
    Nost, Therese Haugdahl
    Schulze, Matthias B.
    Dossus, Laure
    Hung, Rayjean J.
    Amos, Christopher, I
    Ahola-Olli, Ari
    Palaniswamy, Saranya
    Mannikko, Minna
    Auvinen, Juha
    Herzig, Karl-Heinz
    Keinanen-Kiukaanniemi, Sirkka
    Lehtimaki, Terho
    Salomaa, Veikko
    Raitakari, Olli
    Salmi, Marko
    Jalkanen, Sirpa
    Jarvelin, Marjo-Riitta
    Dehghan, Abbas
    Tsilidis, Konstantinos K.
    [J]. BMC MEDICINE, 2022, 20 (01)