FREEDERICKSZ TRANSITION IN NEMATIC LIQUID CRYSTAL FLOWS IN DIMENSION TWO

被引:5
作者
Chen, Yuan [1 ]
Kim, Soojung [2 ]
Yu, Yong [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
[2] Korea Inst Adv Study, Sch Math, Seoul 02455, South Korea
基金
新加坡国家研究基金会;
关键词
Freedericksz transition; liquid crystal; magnetic field; dynamic instability; Ericksen-Leslie system; LONG-TIME BEHAVIOR; EQUATIONS;
D O I
10.1137/17M1151213
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
this article we are concerned with the dynamical instability of liquid crystals induced by applied magnetic fields, which is the so-called Freedericksz transition. The model under consideration is the simplified Ericksen-Leslie system for a nematic liquid crystal in a magnetic field. We showed that if the magnetic field strength exceeds a threshold, any global solution converges exponentially to a unique nontrivial equilibrium solution. Here we also imposed certain initial and strong anchoring boundary conditions. It is also proved that below the threshold, the asymptotic limit is the trivial state.
引用
收藏
页码:4838 / 4860
页数:23
相关论文
共 28 条
[1]  
[Anonymous], 1963, Les quations aux Drives Partielles, DOI DOI 10.1006/JDEQ.1997.3393
[2]  
[Anonymous], 1998, PARTIAL DIFFERENTIAL
[3]   The Effect of External Fields in the Theory of Liquid Crystals [J].
Aramaki, Junichi .
TOKYO JOURNAL OF MATHEMATICS, 2012, 35 (01) :181-211
[4]   Theoretical studies of Freedericksz transitions in SmC liquid crystals [J].
Atkin, RJ ;
Stewart, IW .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 1997, 8 :253-262
[5]  
Chen G., 2004, CONTEMP MATH-SINGAP, V357, P49
[6]  
CHEN Y., 2016, TWISTED SOLUTIONS SI
[7]  
Cherrier P., 2012, GRAD STUD MATH, V135
[8]  
COHEN R, 1991, NATO ADV SCI I C-MAT, V332, P261
[9]   Numerical solution of the Ericksen-Leslie dynamic equations for two-dimensional nematic liquid crystal flows [J].
Cruz, Pedro A. ;
Tome, Murilo F. ;
Stewart, Iain W. ;
McKee, Sean .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 247 :109-136
[10]  
DiBenedetto, 2012, DEGENERATE PARABOLIC