Materials for energy storage: Review of electrode materials and methods of increasing capacitance for supercapacitors

被引:310
作者
Miller, Elizabeth Esther [1 ,2 ]
Hua, Ye [1 ]
Tezel, F. Handan [1 ]
机构
[1] Univ Ottawa, Dept Chem & Biol Engn, 161 Louis Pasteur, Ottawa, ON K1N 6N5, Canada
[2] Univ Waterloo, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Supercapacitors; Electrochemical capacitors; Ultracapacitors; Activated carbon; Graphene; Polyaniline; NITROGEN-DOPED GRAPHENE; TERNARY COMPOSITE; ACTIVE ELECTRODE; POROUS CARBON; PERFORMANCE; HYDROGELS; OXIDE; REDUCTION; DESIGN; FOAM;
D O I
10.1016/j.est.2018.08.009
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Supercapacitors (SCs) have shown great promise as a possible solution to the increasing world demand for efficient energy storage. Two types of mechanisms for SCs exist (double-layer and pseudocapacitive), and each type utilizes a wide variety of materials. In this review, a detailed overview of the mechanisms employed by SCs is provided in the introduction, and many studies are compared in order to determine which materials produce electrodes with high capacitance and cyclability in SCs, and to summarize and gauge the state of such research. The types of materials looked at include graphene and graphene nanocomposites, activated carbons from renewable materials, conducting polymers, and transition metal dichalcogenides. Additionally, different methods of activation that are meant to increase specific capacitance are examined. Among the dozens of materials found in the literature during this study, the ones that exhibited the highest specific capacitances are rGO/PANI (Reduced Graphene Oxide/Polyaniline), and PANI-NFS/GF (Polyaniline Nanofiber Sponge Filled Graphene Foam) demonstrated impressive performances. These materials all exceeded the current expectations of SCs by remarkable amounts, and more research into similar materials is highly encouraged. As more fundamental studies carried out for understanding the mechanisms of SCs, energy density and specific capacitance values continue to improve. Production of SCs from renewable materials encourage optimism for environmentally friendly options soon becoming feasible for use on larger scales.
引用
收藏
页码:30 / 40
页数:11
相关论文
共 57 条
  • [1] Hydrothermal preparation of fluorinated graphene hydrogel for high-performance supercapacitors
    An, Haoran
    Li, Yu
    Long, Peng
    Gao, Yi
    Qin, Chengqun
    Cao, Chen
    Feng, Yiyu
    Feng, Wei
    [J]. JOURNAL OF POWER SOURCES, 2016, 312 : 146 - 155
  • [2] Graphene and its nanocomposites used as an active materials for supercapacitors
    Ates, Murat
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2016, 20 (06) : 1509 - 1526
  • [3] Pseudocapacitive oxide materials for high-rate electrochemical energy storage
    Augustyn, Veronica
    Simon, Patrice
    Dunn, Bruce
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) : 1597 - 1614
  • [4] Becker H., 1957, US Patent, Patent No. [2,800,616, 2800616]
  • [5] From waste Coca Cola® to activated carbons with impressive capabilities for CO2 adsorption and supercapacitors
    Boyjoo, Yash
    Cheng, Yi
    Zhong, Hua
    Tian, Hao
    Pan, Jian
    Pareek, Vishnu K.
    Jiang, San Ping
    Lamonier, Jean-Francois
    Jaroniec, Mietek
    Liu, Jian
    [J]. CARBON, 2017, 116 : 490 - 499
  • [6] R&D considerations for the performance and application of electrochemical capacitors
    Burke, Andrew
    [J]. ELECTROCHIMICA ACTA, 2007, 53 (03) : 1083 - 1091
  • [7] Graphene Materials for Electrochemical Capacitors
    Chen, Ji
    Li, Chun
    Shi, Gaoquan
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (08): : 1244 - 1253
  • [8] Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor
    Chen, Ping
    Yang, Jing-Jing
    Li, Shan-Shan
    Wang, Zheng
    Xiao, Tian-Yuan
    Qian, Yu-Hong
    Yu, Shu-Hong
    [J]. NANO ENERGY, 2013, 2 (02) : 249 - 256
  • [9] Towards flexible solid-state supercapacitors for smart and wearable electronics
    Dubal, Deepak P.
    Chodankar, Nilesh R.
    Kim, Do-Heyoung
    Gomez-Romero, Pedro
    [J]. CHEMICAL SOCIETY REVIEWS, 2018, 47 (06) : 2065 - 2129
  • [10] Porous carbon made from rice husk as electrode material for electrochemical double layer capacitor
    Gao, Yu
    Li, Lei
    Jin, Yuming
    Wang, Yu
    Yuan, Chuanjun
    Wei, Yingjin
    Chen, Gang
    Ge, Junjie
    Lu, Haiyan
    [J]. APPLIED ENERGY, 2015, 153 : 41 - 47