Bismuth oxide nanoparticles embedded carbon nanofibers as self-standing anode material for Na-ion batteries

被引:22
作者
Demir, Emrah [1 ]
Soytas, Serap Hayat [2 ]
Demir-Cakan, Rezan [1 ,3 ]
机构
[1] Gebze Tech Univ, Inst Nanotechnol, TR-41400 Gebze, Kocaeli, Turkey
[2] Sabanci Univ, SUNUM Nanotechnol Res Ctr, TR-34956 Istanbul, Turkey
[3] Gebze Tech Univ, Dept Chem Engn, TR-41400 Gebze, Kocaeli, Turkey
关键词
Sodium-ion batteries; Carbon nanofibers; Bismuth oxide; Electrospinning; ELECTRODE MATERIALS; HARD CARBONS; SODIUM; LITHIUM; NANOCOMPOSITE; NANOSHEETS; NANOTUBES; GRAPHITE;
D O I
10.1016/j.ssi.2019.115066
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphite, the most commonly used anode material for lithium-ion batteries (LIBs), cannot be employed for sodium-ion batteries (SIBs) with conventional carbonate-based electrolyte since the interlayer spacing of graphite is not large enough for sodium ions to be de/intercalated. Bismuth oxide (Bi2O3) is considered as suitable alternative anode material for SIBs owing to its good theoretical specific capacity. However, the volume expansion taking place during discharge and low electrical conductivity result in poor cycling performance and fast capacity fading. Thus, composites with carbon materials are usually preferred to overcome those issues. In this work, Bi2O3 nanoparticles were incorporated in carbon nanofibers (CNF) via electrospinning method. The CNF-Bi2O3 self-standing nanocomposite anode material exhibited excellent rate capability (i.e. 504 mAh g(-1) after 100 cycles at 25 mA g(-1) current density) and superior capacity values (393 mAh g(-1) at 625 mA g(-1)).
引用
收藏
页数:6
相关论文
共 30 条
[1]   Flexible Graphene Stacks for Sodium-Ion Storage [J].
Choe, Jun Ho ;
Kim, Na Rae ;
Lee, Min Eui ;
Yoon, Hyeon Ji ;
Song, Min Yeong ;
Jin, Hyoung-Joon ;
Yun, Young Soo .
CHEMELECTROCHEM, 2017, 4 (03) :716-720
[2]   Synthesis of hard carbon from argan shells for Na-ion batteries [J].
Dahbi, Mouad ;
Kiso, Manami ;
Kubota, Kei ;
Horiba, Tatsuo ;
Chafik, Tarik ;
Hida, Kazuo ;
Matsuyama, Takashi ;
Komaba, Shinichi .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (20) :9917-9928
[3]   Apricot shell derived hard carbons and their tin oxide composites as anode materials for sodium-ion batteries [J].
Demir, Emrah ;
Aydin, Meral ;
Arie, Arenst Andreas ;
Demir-Cakan, Rezan .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 788 :1093-1102
[4]   Pyrolyzed bacterial cellulose-supported SnO2 nanocomposites as high-capacity anode materials for sodium-ion batteries [J].
Dursun, Burcu ;
Sar, Taner ;
Ata, Ali ;
Morcrette, Mathieu ;
Akbas, Meltem Yesilcimen ;
Demir-Cakan, Rezan .
CELLULOSE, 2016, 23 (04) :2597-2607
[5]   Sodium and sodium-ion energy storage batteries [J].
Ellis, Brian L. ;
Nazar, Linda F. .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2012, 16 (04) :168-177
[6]   Synthesis of carbon coated Bi2O3 nanocomposite anode for sodium-ion batteries [J].
Fang, Wei ;
Fan, Lishuang ;
Zhang, Yu ;
Zhang, Qi ;
Yin, Yanyou ;
Zhang, Naiqing ;
Sun, Kening .
CERAMICS INTERNATIONAL, 2017, 43 (12) :8819-8823
[7]   Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance [J].
Fu, Lijun ;
Tang, Kun ;
Song, Kepeng ;
van Aken, Peter A. ;
Yu, Yan ;
Maier, Joachim .
NANOSCALE, 2014, 6 (03) :1384-1389
[8]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176
[9]   Sodium insertion/extraction from single-walled and multi-walled carbon nanotubes: The differences and similarities [J].
Goonetilleke, Damian ;
Pramudita, James C. ;
Choucair, Mohammad ;
Rawal, Aditya ;
Sharma, Neeraj .
JOURNAL OF POWER SOURCES, 2016, 314 :102-108
[10]   Review-Hard Carbon Negative Electrode Materials for Sodium-Ion Batteries [J].
Irisarri, E. ;
Ponrouch, A. ;
Palacin, M. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (14) :A2476-A2482