CMOS Single-Photon Avalanche Diode Pixel Design for a Gun Muzzle Flash Detection Camera

被引:1
作者
Katz, A. [1 ]
Vainstein, C. [1 ]
Shoham, A. [1 ]
Blank, T. [1 ]
Leitner, T. [2 ]
Fenigstein, A. [2 ]
Birk, Y. [1 ]
Nemirovsky, Y. [1 ]
机构
[1] Technion Israel Inst Technol, Elect Engn Dept, IL-3200003 Haifa, Israel
[2] TowerJazz, CIS Res & Dev Dept, IL-2353017 Migdal Haemeq, Israel
关键词
CMOS single-photon avalanche diode (SPAD); dark count rate (DCR); muzzle flash; photon detection efficiency (POE); quenching; IMAGE SENSOR; TECHNOLOGY; NONUNIFORMITY;
D O I
10.1109/TED.2018.2866630
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present the architecture and design of a CMOS single-photon avalanche diode (SPAD) pixel that was selected to be the basis for a gun muzzle flash detection camera. The SPAD sensor and auxiliary circuitry are fabricated in a standard 0.18-mu m CMOS image sensor technology. The pixel integrates a 25-mu m pitch SPAD, a variable-load quenching circuit implemented with a 1.8-V pMOS, and digital processing electronics providing an 8-bit output bus. The SPAD is low noise (around 100-Hz dark count rate at 1.8-V excess voltage) and has a real peak photon detection efficiency (not averaged on pixel pitch) of 9.2% at 450 nm (1.8-V excess voltage). The pixel delivers intensity information through photon counting, up to 256 counts per frame with down to 5-mu s integration time for the full dynamic range. The pixel memories enable parallel processing and global-shutter readout, preventing motion artifacts and partial exposure effects. The pixel can acquire very fast optical events at a high frame-rate (up to 200 kilo frames/s) and at a single-photon level. The pixel has an 8-bit parallel output bus.
引用
收藏
页码:4407 / 4412
页数:6
相关论文
共 44 条
[31]   Parametric Study of p-n Junctions and Structures for CMOS-Integrated Single-Photon Avalanche Diodes [J].
Bose, Soumya ;
Ouh, Hyunkyu ;
Sengupta, Shaan ;
Johnston, Matthew L. .
IEEE SENSORS JOURNAL, 2018, 18 (13) :5291-5299
[32]   Proton induced dark count rate degradation in 150-nm CMOS single-photon avalanche diodes [J].
Campajola, M. ;
Di Capua, F. ;
Fiore, D. ;
Sarnelli, E. ;
Aloisio, A. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2019, 947
[33]   Performance of high-voltage CMOS single-photon avalanche diodes with and without well-modulation technique [J].
Hofbauer, Michael ;
Steindl, Bernhard ;
Schneider-Hornstien, Kerstin ;
Zimmermann, Horst .
OPTICAL ENGINEERING, 2020, 59 (04)
[34]   Modeling and Analysis of Capacitive Relaxation Quenching in a Single Photon Avalanche Diode (SPAD) Applied to a CMOS Image Sensor [J].
Inoue, Akito ;
Okino, Toru ;
Koyama, Shinzo ;
Hirose, Yutaka .
SENSORS, 2020, 20 (10)
[35]   Displacement Damage Characterization of CMOS Single-Photon Avalanche Diodes: Alpha-Particle and Fast-Neutron Measurements [J].
Malherbe, Victor ;
De Paoli, Serge ;
Mamdy, Bastien ;
Gasiot, Gilles ;
Roche, Philippe .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2021, 68 (05) :777-784
[36]   Characterization of small single photon avalanche diode fabricated using standard 180 nm CMOS process for digital SiPM [J].
Oh, Jinseok ;
Jeong, Hakcheon ;
Lee, Min Sun ;
Kwon, Inyong .
NUCLEAR ENGINEERING AND TECHNOLOGY, 2024, 56 (08) :3076-3083
[37]   Minimization design of guard ring size of p-well/DNW single photon avalanche diode [J].
Yang Hong-Jiao ;
Jin Xiang-Liang .
JOURNAL OF INFRARED AND MILLIMETER WAVES, 2018, 37 (05) :527-532
[38]   A low-noise, single-photon avalanche diode in standard 0.13 μm complementary metal-oxide-semiconductor process [J].
Field, Ryan M. ;
Lary, Jenifer ;
Cohn, John ;
Paninski, Liam ;
Shepard, Kenneth L. .
APPLIED PHYSICS LETTERS, 2010, 97 (21)
[39]   Comprehensive understanding of dark count mechanisms of single-photon avalanche diodes fabricated in deep sub-micron CMOS technologies [J].
Xu, Yux ;
Xiang, Ping ;
Xie, Xiaopeng .
SOLID-STATE ELECTRONICS, 2017, 129 :168-174
[40]   A 64 Single Photon Avalanche Diode Array in 0.18 μm CMOS Standard Technology with Versatile Quenching Circuit for Quick Prototyping [J].
Uhring, Wilfried ;
Le Normand, Jean-Pierre ;
Zint, Virginie ;
Dumas, Norbert ;
Dadouche, Foudil ;
Malass, Imane ;
Scholz, Jeremy .
OPTICAL SENSING AND DETECTION II, 2012, 8439