Mesoporous Graphitic Carbon-Encapsulated Fe2O3 Nanocomposite as High-Rate Anode Material for Sodium-Ion Batteries

被引:35
作者
Hou, Tianyi [1 ]
Sun, Xiaohong [1 ,3 ]
Xie, Dongli [1 ]
Wang, Mingjing [1 ]
Fan, Anran [1 ]
Chen, Yuanyuan [1 ]
Cai, Shu [1 ]
Zheng, Chunming [2 ,3 ]
Hu, Wenbin [1 ]
机构
[1] Tianjin Univ, Sch Mat Sci & Engn, Key Lab, Minist Educ Adv Ceram & Machining Technol, Tianjin 300072, Peoples R China
[2] Tianjin Polytech Univ, State Key Lab Separat Membranes & Membrane Proc, Sch Environm & Chem Engn, Tianjin 300387, Peoples R China
[3] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
基金
中国国家自然科学基金;
关键词
anode materials; electrochemistry; Fe2O3; graphitic carbon; mesoporous materials; rate capability; sodium-ion batteries; HIGH-PERFORMANCE ANODE; ELECTROCHEMICAL ENERGY-STORAGE; LOW-COST; LITHIUM; COMPOSITES; NANOCRYSTALS; NANOTUBES; IRON; NANOSTRUCTURES; FABRICATION;
D O I
10.1002/chem.201802916
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A mesoporous graphitic carbon-encapsulated Fe2O3 nanocomposite is synthesized as a superior anode material for sodium-ion batteries. A threefold strategy is adopted to achieve a high rate performance. First, the mesoporous structure with high specific surface area and large pore volume facilitates the transfer of electrolyte and accommodates the large volume change. Secondly, graphitic carbon encapsulation further improves the electronic conductivity of the nanocomposite. Finally, ultrafine Fe2O3 nanocrystals effectively shorten the Na+ diffusion length. Consequently, this nanocomposite exhibits stable and fast Na+ storage, thus leading to excellent rate capability and cyclability. Pseudocapacitive behavior is found to dominate in the redox reactions, accounting for the outstanding rate and cycling performance. In addition, full cells, assembled with O3-Na-0.9[Cu0.22Fe0.30Mn0.48]O-2 as cathodes, present good electrochemical performance.
引用
收藏
页码:14786 / 14793
页数:8
相关论文
共 65 条
[1]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[2]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[3]   α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications [J].
Chen, J ;
Xu, LN ;
Li, WY ;
Gou, XL .
ADVANCED MATERIALS, 2005, 17 (05) :582-+
[4]   Tuning of redox properties of iron and iron oxides via encapsulation within carbon nanotubes [J].
Chen, Wei ;
Pan, Xiulian ;
Bao, Xinhe .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (23) :7421-7426
[5]   High-rate FeS2/CNT neural network nanostructure composite anodes for stable, high-capacity sodium-ion batteries [J].
Chen, Yuanyuan ;
Hu, Xudong ;
Evanko, Brian ;
Sun, Xiaohong ;
Li, Xin ;
Hou, Tianyi ;
Cai, Shu ;
Zheng, Chunming ;
Hu, Wenbin ;
Stucky, Galen D. .
NANO ENERGY, 2018, 46 :117-127
[6]   Enhanced electrochemical performance of SnS nanoparticles/CNTs composite as anode material for sodium-ion battery [J].
Chen, Yuanyuan ;
Wang, Bingjie ;
Hou, Tianyi ;
Hu, Xudong ;
Li, Xin ;
Sun, Xiaohong ;
Cai, Shu ;
Ji, Huiming ;
Zheng, Chunming .
CHINESE CHEMICAL LETTERS, 2018, 29 (01) :187-190
[7]   High-Performance Sodium-Ion Pseudocapacitors Based on Hierarchically Porous Nanowire Composites [J].
Chen, Zheng ;
Augustyn, Veronica ;
Jia, Xilai ;
Xiao, Qiangfeng ;
Dunn, Bruce ;
Lu, Yunfeng .
ACS NANO, 2012, 6 (05) :4319-4327
[8]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[9]  
Fang Y., 2018, Angew. Chemie, V130, P10007, DOI [10.1002/ange.201805552, DOI 10.1002/ANGE.201805552]
[10]   Formation of Polypyrrole-Coated Sb2Se3 Microclips with Enhanced Sodium-Storage Properties [J].
Fang, Yongjin ;
Yu, Xin-Yao ;
Lou, Xiong Wen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (31) :9859-9863