PATH PROPERTIES OF SUBDIFFUSION-A MARTINGALE APPROACH

被引:50
作者
Magdziarz, Marcin [1 ]
机构
[1] Wroclaw Univ Technol, Hugo Steinhaus Ctr, Inst Math & Comp Sci, PL-50370 Wroclaw, Poland
关键词
Inverse subordinator; Law of the iterated logarithm; Law of large numbers; Martingale; Subdiffusion; ANOMALOUS DIFFUSION; RANDOM-WALKS; BROWNIAN-MOTION; LIMIT-THEOREMS; LOCAL TIME; RELAXATION;
D O I
10.1080/15326341003756379
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In statistical physics, subdiffusion processes constitute one of the most relevant subclasses of the family of anomalous diffusion models. These processes are characterized by certain power-law deviations from the classical Brownian linear time dependence of the mean-squared displacement. In this article we study sample path properties of subdiffusion. We propose a martingale approach to the stochastic analysis of subdiffusion models. We verify the martingale property, Holder continuity of the trajectories, and derive the law of large numbers. The precise asymptotic behavior of subdiffusion is obtained in the law of the iterated logarithm. The presented results may be applied to identify the type of subdiffusive dynamics in experimental data.
引用
收藏
页码:256 / 271
页数:16
相关论文
共 37 条
[1]  
[Anonymous], 1993, INTEGRALS DERIVATIVE
[2]   BROWNIAN SUBORDINATORS AND FRACTIONAL CAUCHY PROBLEMS [J].
Baeumer, Boris ;
Meerschaert, Mark M. ;
Nane, Erkan .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (07) :3915-3930
[3]   2 UNIFORM INTRINSIC CONSTRUCTIONS FOR THE LOCAL TIME OF A CLASS OF LEVY PROCESSES [J].
BARLOW, MT ;
PERKINS, EA ;
TAYLOR, SJ .
ILLINOIS JOURNAL OF MATHEMATICS, 1986, 30 (01) :19-65
[4]  
Bertoin J., 1996, Levy Processes
[5]   LIMIT THEOREMS FOR OCCUPATION TIMES OF MARKOV PROCESSES [J].
BINGHAM, NH .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1971, 17 (01) :1-&
[6]  
BURDZY K, 1993, PROG PROBAB, V33, P67
[7]   Strassen theorems for a class of iterated processes [J].
Csaki, E ;
Foldes, A ;
Revesz, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (03) :1153-1167
[8]   Monitoring of stochastic particle systems: Analysis and optimization [J].
Eliazar, I. ;
Yechiali, U. .
Stochastic Models, 2008, 24 (01) :1-18
[9]   From Ornstein-Uhlenbeck dynamics to long-memory processes and fractional Brownian motion [J].
Eliazar, Iddo ;
Klafter, Joseph .
PHYSICAL REVIEW E, 2009, 79 (02)
[10]   LOWER FUNCTIONS FOR INCREASING RANDOM WALKS AND SUBORDINATORS [J].
FRISTEDT, BE ;
PRUITT, WR .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1971, 18 (03) :167-&