Kinetics of Peptides and Arginine Production from Microalgae (Scenedesmus sp.) by Flash Hydrolysis

被引:44
作者
Garcia-Moscoso, Jose L. [1 ]
Teymouri, Ali [1 ]
Kumar, Sandeep [1 ]
机构
[1] Old Dominion Univ, Dept Civil & Environm Engn, Norfolk, VA 23529 USA
基金
美国国家科学基金会;
关键词
SUPERCRITICAL WATER GASIFICATION; HYDROTHERMAL LIQUEFACTION; PROTEINACEOUS MATERIAL; BOTRYOCOCCUS-BRAUNII; ALGAL LIPIDS; AMINO-ACIDS; RICE BRAN; EXTRACTION; PYROLYSIS; PRESERVATION;
D O I
10.1021/ie5047279
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Water under subcritical conditions in a continuous-flow reactor (flash hydrolysis) has proved to be an efficient and environmentally friendly method for hydrolyzing proteins from microalgae biomass in a very short residence time (few seconds). In this study, flash hydrolysis experiments were conducted at three different temperatures (240, 280, and 320 degrees C) and three residence times (6, 9, and 12 s) to understand the kinetics of the hydrolysis of algae proteins to water-soluble peptides and arginine. Laboratory-grown protein-rich Scenedesmus sp. with an average composition of 54% proteins, 17% lipids, and 23% carbohydrates was used as the feedstock. After flash hydrolysis, both liquid and solid products were collected, and the contents of soluble peptides and arginine in the liquid fraction and of remaining proteinaceous material in the solids were analyzed. For all experiments above 240 degrees C at all residence times, the yield of soluble peptides was in the range of 57-67% of the algae protein, whereas the maximum arginine yield (81.51%) was achieved at 320 degrees C and a residence time of 6 s. The protein solubilization to soluble peptides fitted second-order reaction kinetics, whereas for arginine, the process was zeroth-order; the activation energies were calculated to be 43.0 and 34.1 kJ/mol, respectively. The results of this study suggest that flash hydrolysis can be an environmentally benign method for hydrolyzing proteins from microalgae to produce valuable coproducts such as arginine as a free amino acid and water-soluble peptides along with lipid-rich solids (biofuel intermediate) as a feedstock for biofuel production.
引用
收藏
页码:2048 / 2058
页数:11
相关论文
共 47 条
[1]   Amino acid transformation and decomposition in saturated subcritical water conditions [J].
Abdelmoez, Wael ;
Nakahasi, Tomomi ;
Yoshida, Hiroyuki .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (16) :5286-5294
[2]   Biotechnology applications of amino acids in protein purification and formulations [J].
Arakawa, T. ;
Tsumoto, K. ;
Kita, Y. ;
Chang, B. ;
Ejima, D. .
AMINO ACIDS, 2007, 33 (04) :587-605
[3]   Micro-algae as a source of protein [J].
Becker, E. W. .
BIOTECHNOLOGY ADVANCES, 2007, 25 (02) :207-210
[4]  
Bi Z, 2013, T ASABE, V56, P1529
[5]   Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process [J].
Biller, P. ;
Ross, A. B. ;
Skill, S. C. ;
Lea-Langton, A. ;
Balasundaram, B. ;
Hall, C. ;
Riley, R. ;
Llewellyn, C. A. .
ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2012, 1 (01) :70-76
[6]   Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content [J].
Biller, P. ;
Ross, A. B. .
BIORESOURCE TECHNOLOGY, 2011, 102 (01) :215-225
[7]  
BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911
[8]   Catalytic and Non-catalytic Supercritical Water Gasification of Microalgae and Glycerol [J].
Chakinala, Anand G. ;
Brilman, Derk W. F. ;
van Swaaij, Wim P. M. ;
Kersten, Sascha R. A. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (03) :1113-1122
[9]   Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review [J].
Chen, Chun-Yen ;
Yeh, Kuei-Ling ;
Aisyah, Rifka ;
Lee, Duu-Jong ;
Chang, Jo-Shu .
BIORESOURCE TECHNOLOGY, 2011, 102 (01) :71-81
[10]   Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae [J].
Dean, Andrew P. ;
Sigee, David C. ;
Estrada, Beatriz ;
Pittman, Jon K. .
BIORESOURCE TECHNOLOGY, 2010, 101 (12) :4499-4507