Polyhedral-Au@SiO2@Au Core-Shell Nanoparticle Reveals a Broadband and Tunable Strong Local Field Enhancement

被引:4
作者
Tang, Ping [1 ]
Xing, Meishuang [1 ]
Zhong, Liyun [1 ]
Xing, Xinyue [1 ]
Wang, Huiyang [1 ]
Liu, Shengde [1 ]
Lu, Xiaoxu [1 ]
Qin, Yuwen [1 ]
机构
[1] Guangdong Univ Technol, Guangdong Prov Key Lab Informat Photon Technol, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
GOLD NANOPARTICLES; RAMAN-SPECTROSCOPY; AU; NANOSHELLS; SCATTERING; DIMERS;
D O I
10.1021/acs.jpcc.2c01586
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, we introduce different polyhedral Au nanoparticles (AuNPs) as the core of Au@SiO2@Au and analyze the effect of internal nanogap morphology on local field enhancement. Compared with spherical Au core, polyhedral Au core has sharper edges and vertices, and it can make the plasmon resonance peaks of Au core and shell closer to each other by changing the internal polyhedron-shell nanogap morphology, so the polyhedral-Au@SiO2@Au nanoparticle can realize a broadband and tunable strong local electric field enhancement, especially for tetrahedral-Au@SiO2@Au and octahedral-Au@SiO2@Au nanoparticles. We numerically demonstrate that the polyhedral-Au@SiO2@Au nanoparticle can even produce a 100-200 nm broadband window and a 2-3 orders of magnitude stronger local electric field enhancement compared with the spherical-Au@SiO2@Au nanoparticle, which produces only a 50-60 nm narrow band. This polyhedral-Au@SiO2@Au core-shell nanoparticle is a promising plasmonic nanostructure for signal enhancement during excitation and radiation processes for enhanced fluorescence or Raman imaging, especially for multiwavelength Raman analysis of multiple reporter molecules whose signals need to be enhanced simultaneously.
引用
收藏
页码:8165 / 8176
页数:12
相关论文
共 50 条
  • [31] Broadband SERS detection with disordered plasmonic hybrid aggregates
    Mao, Peng
    Liu, Changxu
    Chen, Qiang
    Han, Min
    Maier, Stefan A.
    Zhang, Shuang
    [J]. NANOSCALE, 2020, 12 (01) : 93 - 102
  • [32] Estimating Near Electric Field of Polyhedral Gold Nanoparticles for Plasmon-Enhanced Spectroscopies
    Montano-Priede, Jose Luis
    Pal, Umapada
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (18) : 11833 - 11839
  • [33] Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles
    Nam, Jwa-Min
    Oh, Jeong-Wook
    Lee, Haemi
    Suh, Yung Doug
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2016, 49 (12) : 2746 - 2755
  • [34] DNA Origami-Based Nanoprinting for the Assembly of Plasmonic Nanostructures with Single-Molecule Surface-Enhanced Raman Scattering
    Niu, Renjie
    Song, Chunyuan
    Gao, Fei
    Fang, Weina
    Jiang, Xinyu
    Ren, Shaokang
    Zhu, Dan
    Su, Shao
    Chao, Jie
    Chen, Shufen
    Fan, Chunhai
    Wang, Lianhui
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (21) : 11695 - 11701
  • [35] Precisely Shaped, Uniformly Formed Gold Nanocubes with Ultrahigh Reproducibility in Single-Particle Scattering and Surface-Enhanced Raman Scattering
    Park, Jeong-Eun
    Lee, Yeonhee
    Nam, Jwa-Min
    [J]. NANO LETTERS, 2018, 18 (10) : 6475 - 6482
  • [36] Highly Controlled Synthesis and Super-Radiant Photoluminescence of Plasmonic Cube-in-Cube Nanoparticles
    Park, Jeong-Eun
    Kim, Sungi
    Son, Jiwoong
    Lee, Yeonhee
    Nam, Jwa-Min
    [J]. NANO LETTERS, 2016, 16 (12) : 7962 - 7967
  • [37] Localized Hybrid Plasmon Modes Reversion in Gold-Silica-Gold Multilayer Nanoshells
    Qian, Jun
    Li, Yudong
    Chen, Jing
    Xu, Jingjun
    Sun, Qian
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (16) : 8581 - 8587
  • [38] Anisotropic metal nanoparticles for surface enhanced Raman scattering
    Reguera, Javier
    Langer, Judith
    Jimenez de Aberasturi, Dorleta
    Liz-Marzan, Luis M.
    [J]. CHEMICAL SOCIETY REVIEWS, 2017, 46 (13) : 3866 - 3885
  • [39] Plasmonic Heterodimers with Binding Site-Dependent Hot Spot for Surface-Enhanced Raman Scattering
    Tian, Yuanyuan
    Shuai, Zhenhua
    Shen, Jingjing
    Zhang, Lei
    Chen, Shufen
    Song, Chunyuan
    Zhao, Baomin
    Fan, Quli
    Wang, Lianhui
    [J]. SMALL, 2018, 14 (24)
  • [40] Near-Infrared II Thermoplasmonics of Cuprous Selenide Multilayer Nanoshells: The Role of the Plasmonic Core
    Wang, Haitao
    Li, Ming
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (20) : 4928 - 4935